

Scuola Superiore Sant’Anna, Pisa

September, 2017

Multicore implementations of the
Logical Execution Time paradigm

Alessandro Biondi, Marco Di Natale

© 2017 Scuola Superiore Sant’Anna

Summary

Subject: Implementation of the logical execution time
(LET) model in AUTOSAR

response-time analysis is affected by memory
latencies (access + contention) which is reduced by LET
(see Waters)

Optimization algorithms for label placement

Analogies with the single-core equivalence model

Motivation: Strong industrial push and the
WATERS17 challenge

© 2017 Scuola Superiore Sant’Anna

One instance of the problem

Porting engine control applications from single- to dual-core.

A
p
p
ro

x

2
0

0
 r

u
n
n
a
b
le

s

1 Core
2 Cores

Calling 100s of
DD functions

C
u
rr

e
n
tl

y
 m

a
p
p
e
d
 i
n

1
2

 t
a
s
k
s

With
internal
depend
encies

Scheduled by
priority on 1 core

Using the
devices
of the
micro

Mapped onto
the tasks

A
p
p
ro

x

2
0

0
 r

u
n
n
a
b
le

s

Calling 100s of
DD functions

M
a
p
p
e
d
?

With
internal
depend
encies

Allocated and Scheduled by
priority on 2 cores

Sharing
the

devices
of the
micro

Mapped onto
the tasks

?

A “schedulable”
and extensible

solution

© 2017 Scuola Superiore Sant’Anna

Consider the WATERS challenge 2017

https://waters2017.inria.fr/challenge/

Examples of the problem

Paper # 2016-01-0017 4

Engine control application

already deployed on a 4-core

2016 challenge asked for

methods for timing analysis

2017 challenge asked for

consideration of the LET

paradigm and optimization of

placement in memory of

communication data

Data is provided as an AMALTHEA DSML model (in practice AUTOSAR)

Interesting placement of tasks on cores (2 cores for IO, one for rate

dependent and very high rate, the other for all periodic tasks)

We provided our own solution (MILP / GA) with interesting outcome

© 2017 Scuola Superiore Sant’Anna

RTE implicit communication

TASK(...)

{

volatile <type> local_P_D;

volatile <type> local_Q_E;

/* ... */

local_P_D = global_P_D;

local_Q_E = global_Q_E;

Runnable();

global_P_D = local_P_D;

}

Runnable

Task

Consider an Rte_IWrite API that sends VariableDataPrototype

D via port P and an Rte_IRead API that reads

VariableDataPrototype E via port Q.

AUTOSAR Implicit communication

© 2017 Scuola Superiore Sant’Anna

WATERS challenge 2017 …

LET on multicores

Paper # 2016-01-0017 6

(Kirsch et al ?) Tasks input data at

the beginning of their period and

output is delayed until the end of

the period (trade output jitter for

delay)

Also improves determinism in the

access to memory !

LET also brings similarity with the

AUTOSAR RTE immediate

communication model

© 2017 Scuola Superiore Sant’Anna

Logical Execution Time

• Logical Execution Time (LET) eliminates output jitter and
provide time determinism in the implementation of control
algorithms

input output/action

Classical
design

Strictly periodic input/output

time

LET

time

prone to output jitter

© 2017 Scuola Superiore Sant’Anna

LET Implementation in AUTOSAR

• LET can be implemented with additional runnables with precedence
constraints w.r.t. the corresponding tasks

• Runnables of the same rate can be merged into a LET task
• Need for duplicate variables which may introduce additional memory

contention (relatively straightforward extension of the AUTOSAR implicit
communication model) This design can be integrated as part of the

AUTOSAR run-time environment (RTE)

Task
(Explicit comm.)

time

LET Task

time

From local variables
(prev. instance) to output

From input to local
variables (current instance)

access local variables

© 2017 Scuola Superiore Sant’Anna

LET tasks

• LET tasks should be executed with the highest priority levels

(possibly with relative rate-monotonic order)

• Limited jitter is anyway unavoidable

• Precedence constraints are automatically enforced by fixed-
priority scheduling

p
ri

o
ri

ty

time

time

time

LET
tasks

Regular tasks

© 2017 Scuola Superiore Sant’Anna

Other considerations: Multicores

• Freescale P4080 (development partly driven by Bosch)

• In general

• Software executing in different cores of a multicore chip can

severely interfere with each other due to shared hardware

resources (e.g., cache, memory, I/O channels, etc.).

• Worst-Case Execution Time (WCET) of tasks directly depends on

the number of active cores m.

By M. Caccamo – Univ. Of Illinois

Multicore architectures were not designed or

verified for compliance with safety critical systems

© 2017 Scuola Superiore Sant’Anna

Other considerations: Multicores

• The single-core equivalence projects at University of Illinois

By M. Caccamo – Univ. Of Illinois

Source: Lockheed Space Systems
HWIL Testbed

Critical Software can be Slowed by

up to 6X if Uncontrolled
Single Core Equivalence (SCE)
http://rtsl-edge.cs.illinois.edu/SCE/

© 2017 Scuola Superiore Sant’Anna

Cache coloring (pinning), cache and local memory

preloading

Issues with determinism of multicore platforms

Paper # 2016-01-0017 12
By M. Caccamo – Univ. Of Illinois

© 2017 Scuola Superiore Sant’Anna

Back to the Waters challenge

CPU

0

CPU

1

CPU

2

CPU

3

LM 0 LM 1 LM 2 LM3

Crossbar

GM

core local
memory

global DRAM

provides point-to-point
communication between
each core and memory

© 2017 Scuola Superiore Sant’Anna

MEMORY LATENCIES

• FIFO arbitration is starvation-free and memory

accesses are non-interruptible

• FIFO invariant: each memory access is delayed by

at most one memory access per remote processor

Problem: How to bound memory access latencies

to perform response-time analysis?

• Naïve approach: inflate tasks’ WCETs with a coarse
bound for each memory access

bound = <access cost> + (m - 1) x <contention cost>

number of CPUs

© 2017 Scuola Superiore Sant’Anna

SOMETHING BETTER IS NEEDED

• WCET inflation typically originates multiple sources of pessimism

(e.g., see Wieder and Brandenburg, RTSS13)

• It may completely hide the real problem of label

placement, as multiple solutions would result in the same

latencies

The naïve approach may result very pessimistic

time

time

Task 1
CPU #0

Task 2
CPU #1

short period

large period
Only one of these jobs

can incur in a conflict

+1 +1 +1 +1 +1 +1

Example (source of pessimism)

© 2017 Scuola Superiore Sant’Anna

PROPOSED APPROACH

• Analysis design principles:

– Do not inflate tasks’ WCETs

– Explicitly account for memory contention at the stage of

response-time analysis

– Do not overcount conflicting accesses

• Identification of all possible memory accesses

that may overlap with the problem window

• Enforcement of the FIFO invariant

problem window of given length t

CPU 1

CPU 2

CPU 3

CPU 0
under analysis

4

© 2017 Scuola Superiore Sant’Anna

LABEL PLACEMENT

Problem: How to optimize the label placement?

• By leveraging the proposed response-time analysis, we

formulated an optimization problem that aims at placing the

label while matching schedulability constraints

• Objective: minimize the largest normalized response-time

• The optimization problem has been addressed by

• designing a mixed-integer linear program (MILP) formulation

• developing a genetic algorithm

Achieved +35% w.r.t. the label placement

provided in the challenge model

© 2017 Scuola Superiore Sant’Anna

MILP FORMULATION

• Several challenges have been addressed to achieve a linear

formulation of the problem

• Two key slight approximations:

– Approximation of high-priority Interference (Park and Park, 2014),

with very low empirical performance loss (<1%)

– Resolution of circular dependencies introduced by the response-

times in the memory contention terms (deadlines used as safe

bounds on the response-times)

Guarantees optimality (w.r.t. the adopted analysis) and provides
guaranteed optimality gaps of intermediate solutions

Communication Objectives Extensions

• Explicit

• LET

• Implicit

• Minimize response-times

• Minimize jitters

• Maximize slacks

• Minimize end-to-end latencies

• …

• Deadlines on effect chains

• Constraints on jitters

• Constraints on response-

times of runnables

• …

in red those that are supported today

© 2017 Scuola Superiore Sant’Anna

SETUP AND ASSUMPTIONS

• Use of mean execution times as WCETs (the system is

definitively in overload when maximum execution times are

used)

• Cost of memory conflict:

– 1 cycle, when locally generated (corresponding core)

– 9 cycles, when generated by a remote processor

• Logical Execution Time

• Implemented only for the labels (and hence the corresponding
runnables) involved in the effect chains

• In total, 10 runnables and just 7 labels

• Runnables of the same task managed by the same LET task, for a
total of 5 LET tasks

CPU

0

CPU

1

CPU

2

CPU

3

700 µs
2 ms
50 ms 10ms

© 2017 Scuola Superiore Sant’Anna

MEMORY OPTIMIZATION

MILP Formulation
– IBM CPLEX on 8-core Intel Xeon E5 @ 2.5Ghz

– The solver is able to immediately find a feasible solution

– Optimal solutions can be found in a reasonable amount of time

– Provably very good solutions can be found in a few minutes

– Impact of the approximations resulted very marginal (~1%)

Communication Optimal Optimality gap <

1%

Explicit 1h and 20 minutes < 2 minutes

LET 1h and 50 minutes < 7 minutes

Genetic Algorithm
• Implemented in C++ and executed on Intel i7 @ 4Ghz

• Used as a baseline for comparison

• First feasible solution after ~2h and 45 mins

• Slight worse solution obtained with 20 runs of 40 hours each

© 2017 Scuola Superiore Sant’Anna

OPTIMAL LABEL PLACEMENT WITH MILP

Value of Objective

Function

Explicit 0.849555

LET 0.849555

• Same quality of solution for both LET and explicit

communication, but with completely different placements

• There are several optimal solutions that are equivalent

• End-to-end latencies have also been computed with the

optimal label placement

© 2017 Scuola Superiore Sant’Anna

DISCUSSION

• Angle_sync task overwhelms all the timing

constraints, leaving little room for observing

interesting results
– With maximum execution times, Angle_sync has an

utilization of ~1.35 (without memory latencies)

– Missing modeling of speed-dependent behavior?

– The consideration of the adaptive variable-rate (AVR) task

model would definitively improve the analysis precision

 • Local memories are quite large: most labels can be
fit into them without exploiting the global memory

The key problem is the placement of runnables

© 2017 Scuola Superiore Sant’Anna

CONCLUSIONS AND FUTURE WORK

• Contributions (applicable in general):

– Implementation of LET in AUTOSAR

– New analysis for memory latencies

– Optimization algorithms for label placement: MILP-based

approach performs quite satisfactorily

• Several limitations in the challenge model:
– Everything is dominated by the Angle_sync

– Fixed placement of the runnables

– Missing deadlines of the event chains

Need for a holistic design methodology:
• Joint placement of runnables and labels
• Selection of communication mechanisms

• Microcontroller configuration?, …

© 2017 Scuola Superiore Sant’Anna

The end

Real-Time Embedded Systems

Thank you!

