
 

Scuola Superiore Sant’Anna, Pisa 

September, 2017 

Multicore implementations of the 
Logical Execution Time paradigm 

Alessandro Biondi, Marco Di Natale 



© 2017 Scuola Superiore Sant’Anna  

Summary 

Subject: Implementation of the logical execution time 
(LET) model in AUTOSAR 

response-time analysis is affected by memory 
latencies (access + contention) which is reduced by LET 
(see Waters) 

Optimization algorithms for label placement 

Analogies with the single-core equivalence model 

Motivation: Strong industrial push and the 
WATERS17 challenge 
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One instance of the problem 

Porting engine control applications from single- to dual-core. 
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Consider the WATERS challenge 2017 

https://waters2017.inria.fr/challenge/ 

 

 

Examples of the problem 

Paper # 2016-01-0017 4 

Engine control application 

already deployed on a 4-core 

2016 challenge asked for 

methods for timing analysis 

2017 challenge asked for 

consideration of the LET 

paradigm and optimization of 

placement in memory of 

communication data 

 

Data is provided as an AMALTHEA DSML model (in practice AUTOSAR) 

Interesting placement of tasks on cores (2 cores for IO, one for rate 

dependent and very high rate, the other for all periodic tasks) 

We provided our own solution (MILP / GA) with interesting outcome 
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RTE implicit communication

TASK(...)

{

volatile <type> local_P_D;

volatile <type> local_Q_E;

/* ... */

local_P_D = global_P_D; 

local_Q_E = global_Q_E; 

Runnable();

global_P_D = local_P_D;

}

Runnable

Task

Consider an Rte_IWrite API that sends VariableDataPrototype

D via port P and an Rte_IRead API that reads

VariableDataPrototype E via port Q.

AUTOSAR Implicit communication 
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WATERS challenge 2017 … 

 

 

LET on multicores 

Paper # 2016-01-0017 6 

(Kirsch et al ?) Tasks input data at 

the beginning of their period and 

output is delayed until the end of 

the period (trade output jitter for 

delay) 

Also improves determinism in the 

access to memory ! 

 

LET also brings similarity with the 

AUTOSAR RTE immediate 

communication model 
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Logical Execution Time 

• Logical Execution Time (LET) eliminates output jitter and 
provide time determinism in the implementation of control 
algorithms 

input output/action 

Classical 
design 

Strictly periodic input/output 

time 

LET 

time 

prone to output jitter 
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LET Implementation in AUTOSAR 

• LET can be implemented with additional runnables with precedence 
constraints w.r.t. the corresponding tasks 

• Runnables of the same rate can be merged into a LET task 
• Need for duplicate variables which may introduce additional memory 

contention (relatively straightforward extension of the AUTOSAR implicit 
communication model) This design can be integrated as part of the 

AUTOSAR run-time environment (RTE) 

Task 
(Explicit comm.) 

time 

LET Task 

time 

From local variables  
(prev. instance) to output 

 

From input to local  
variables (current instance) 

access local variables 
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LET tasks 

• LET tasks should be executed with the highest priority levels 

(possibly with relative rate-monotonic order) 

• Limited jitter is anyway unavoidable 

• Precedence constraints are automatically enforced by fixed-
priority scheduling 
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Other considerations: Multicores 

• Freescale P4080 (development partly driven by Bosch) 

• In general 

• Software executing in different cores of a multicore chip can 

severely interfere with each other due to shared hardware 

resources (e.g., cache, memory, I/O channels, etc.). 

• Worst-Case Execution Time (WCET) of tasks directly depends on 

the number of active cores m. 

 
By M. Caccamo – Univ. Of Illinois 

Multicore architectures were not designed or 

verified for compliance with safety critical systems  
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Other considerations: Multicores 

• The single-core equivalence projects at University of Illinois 

 

 

By M. Caccamo – Univ. Of Illinois 

Source: Lockheed Space Systems  
HWIL Testbed 

Critical Software can be Slowed by 

up to 6X if Uncontrolled  
Single Core Equivalence (SCE) 
http://rtsl-edge.cs.illinois.edu/SCE/ 
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Cache coloring (pinning), cache and local memory 

preloading 

Issues with determinism of multicore platforms 

Paper # 2016-01-0017 12 
By M. Caccamo – Univ. Of Illinois 
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Back to the Waters challenge 
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core local  
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global DRAM 

provides point-to-point  
communication between  
each core and memory 
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MEMORY LATENCIES 

• FIFO arbitration is starvation-free and memory 

accesses are non-interruptible 

• FIFO invariant: each memory access is delayed by 

at most one memory access per remote processor 

 

Problem: How to bound memory access latencies 

to perform response-time analysis? 

• Naïve approach: inflate tasks’ WCETs with a coarse 
bound for each memory access 

bound = <access cost> + (m - 1) x <contention cost> 

number of CPUs 
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SOMETHING BETTER IS NEEDED 

• WCET inflation typically originates multiple sources of pessimism 

(e.g., see Wieder and Brandenburg, RTSS13) 

• It may completely hide the real problem of label 

placement, as multiple solutions would result in the same 

latencies 

The naïve approach may result very pessimistic  

time 

time 

Task 1 
CPU #0 

Task 2 
CPU #1 

short period 

large period 
Only one of these jobs 

can incur in a conflict 

+1 +1 +1 +1 +1 +1 

Example (source of pessimism) 
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PROPOSED APPROACH 

• Analysis design principles: 

– Do not inflate tasks’ WCETs 

– Explicitly account for memory contention at the stage of 

response-time analysis 

– Do not overcount conflicting accesses 

• Identification of all possible memory accesses 

that may overlap with the problem window 

• Enforcement of the FIFO invariant 

problem window of given length t 

CPU 1 

CPU 2 

CPU 3 

CPU 0 
under analysis 

4 
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LABEL PLACEMENT 

Problem: How to optimize the label placement? 

• By leveraging the proposed response-time analysis, we 

formulated an optimization problem that aims at placing the 

label while matching schedulability constraints 

• Objective: minimize the largest normalized response-time 

• The optimization problem has been addressed by 

• designing a mixed-integer linear program (MILP) formulation 

• developing a genetic algorithm 

Achieved +35% w.r.t. the label placement 

provided in the challenge model 
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MILP FORMULATION 

• Several challenges have been addressed to achieve a linear 

formulation of the problem 

• Two key slight approximations: 

– Approximation of high-priority Interference (Park and Park, 2014), 

with very low empirical performance loss (<1%) 

– Resolution of circular dependencies introduced by the response-

times in the memory contention terms (deadlines used as safe 

bounds on the response-times) 

Guarantees optimality (w.r.t. the adopted analysis) and provides 
guaranteed optimality gaps of intermediate solutions 

Communication Objectives Extensions 

• Explicit 

• LET 

• Implicit 

• Minimize response-times 

• Minimize jitters 

• Maximize slacks 

• Minimize end-to-end latencies 

• … 

• Deadlines on effect chains 

• Constraints on jitters 

• Constraints on response-

times of runnables 

• … 

in red those that are supported today 
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SETUP AND ASSUMPTIONS 

• Use of mean execution times as WCETs (the system is 

definitively in overload when maximum execution times are 

used) 

• Cost of memory conflict: 

– 1 cycle, when locally generated (corresponding core) 

– 9 cycles, when generated by a remote processor 

 

 
• Logical Execution Time 

• Implemented only for the labels (and hence the corresponding 
runnables) involved in the effect chains 

• In total, 10 runnables and just 7 labels 

• Runnables of the same task managed by the same LET task, for a 
total of 5 LET tasks 
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MEMORY OPTIMIZATION 

MILP Formulation 
– IBM CPLEX on 8-core Intel Xeon E5 @ 2.5Ghz 

– The solver is able to immediately find a feasible solution 

– Optimal solutions can be found in a reasonable amount of time 

– Provably very good solutions can be found in a few minutes 

– Impact of the approximations resulted very marginal (~1%) 

 
 
 

Communication Optimal Optimality gap < 

1% 

Explicit 1h and 20 minutes < 2 minutes 

LET 1h and 50 minutes < 7 minutes 

Genetic Algorithm 
• Implemented in C++ and executed on Intel i7 @ 4Ghz 

• Used as a baseline for comparison 

• First feasible solution after ~2h and 45 mins 

• Slight worse solution obtained with 20 runs of 40 hours each 
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OPTIMAL LABEL PLACEMENT WITH MILP 

Value of Objective 

Function 

Explicit 0.849555 

LET 0.849555 

• Same quality of solution for both LET and explicit 

communication, but with completely different placements 

• There are several optimal solutions that are equivalent 

• End-to-end latencies have also been computed with the 

optimal label placement 
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DISCUSSION 

• Angle_sync task overwhelms all the timing 

constraints, leaving little room for observing 

interesting results 
– With maximum execution times, Angle_sync has an 

utilization of ~1.35 (without memory latencies) 

– Missing modeling of speed-dependent behavior? 

– The consideration of the adaptive variable-rate (AVR) task 

model would definitively improve the analysis precision 

 • Local memories are quite large: most labels can be 
fit into them without exploiting the global memory 

The key problem is the placement of runnables 
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CONCLUSIONS AND FUTURE WORK 

• Contributions (applicable in general):  

– Implementation of LET in AUTOSAR 

– New analysis for memory latencies 

– Optimization algorithms for label placement: MILP-based 

approach performs quite satisfactorily 

• Several limitations in the challenge model: 
– Everything is dominated by the Angle_sync 

– Fixed placement of the runnables 

– Missing deadlines of the event chains 

 
Need for a holistic design methodology: 
• Joint placement of runnables and labels 
• Selection of communication mechanisms 

• Microcontroller configuration?, … 
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The end 

Real-Time Embedded Systems 

Thank you! 


