Algorithms for Hierarchical and Semi-Partitioned Parallel Scheduling

Vincenzo Bonifaci¹ Gianlorenzo D'Angelo² Alberto Marchetti-Spaccamela³

¹ IASI - Consiglio Nazionale delle Ricerche, Rome ² Gran Sasso Science Institute, L'Aquila ³ Sapienza University of Rome

IWES 2017 (published at IEEE IPDPS 2017)

Motivation: Scheduling jobs on computing clusters

Given: a set of computational jobs

$$J_1$$
 Multiply.exe J_2 MaxCut.exe J_3 TSP.exe ...

Motivation: Scheduling jobs on computing clusters

Given: a set of computational jobs

to be scheduled on clusters of heterogeneous machines (processors)

Motivation: Scheduling jobs on computing clusters

Given: a set of computational jobs

to be scheduled on clusters of heterogeneous machines (processors)

Two types of approach: with or without migration

- **1** Partitioned: Confine each job to a specific machine
- **Q** Global: Allow jobs to migrate between machines (and clusters)

Partitioned scheduling

- + No migration overheads
- More constrained, smaller set of schedulable instances

Global scheduling

- + Less constrained, larger set of schedulable instances
- Migration overheads

• Semi-partitioned scheduling

- pre-assign some of the jobs to the machines
- allow global migrations for the rest
- Clustered scheduling:
 - pre-assign each job to a machine cluster
 - allow migrations inside each cluster

Bastoni, Brandenburg & Anderson (2010): experimental comparison of the trade-offs

- System interface to restrict the set of processors on which a job may be scheduled
- Widely available across operating systems:
 - Linux: sched_setaffinity()
 - FreeBSD: cpuset_setaffinity()
 - Windows: SetThreadAffinityMask()

	mach. 1	mach. 2	mach. 3	mach. 4	
job 1	х	х	-	-	
job 2	х	х	х	х	
job 3	-	-	х	х	
job 4	х	-	-	-	

job 1 x x job 2 x x x x job 3 x x job 4 x		mach. 1	mach. 2	mach. 3	mach. 4	
job 2 x x x x job 3 x x job 4 x	job 1	х	Х	-	-	
job 3 – – x x job 4 x – – –	job 2	х	х	х	х	
job 4 x	job 3	-	-	х	х	
	job 4	х	-	-	-	

• Question: How to set affinity masks to achieve good tradeoffs? And how to model the tradeoffs in the first place? Idea: allow the processing time to depend on the affinity mask of the job

- jobs $J = \{1, ..., n\}$
- machines $M = \{1, \ldots, m\}$
- a family of admissibile sets $\mathcal{A} \subseteq 2^M$ (the available masks)
- for each $j \in J$, a function $P_j : \mathcal{A}
 ightarrow \mathbb{Z}_+$
 - monotone: $\alpha \subset \beta \Rightarrow P_j(\alpha) \leq P_j(\beta)$

Idea: allow the processing time to depend on the affinity mask of the job

- jobs $J = \{1, ..., n\}$
- machines $M = \{1, \ldots, m\}$
- a family of admissibile sets $\mathcal{A} \subseteq 2^M$ (the available masks)

Interpretation: $P_j(\alpha)$ is the processing time of j when j is allowed to migrate over any machine in α

 \Rightarrow migration overheads can be embedded in $P_j(\alpha)$, if desired

Idea: allow the processing time to depend on the affinity mask of the job

- jobs $J = \{1, ..., n\}$
- machines $M = \{1, \ldots, m\}$
- a family of admissibile sets $\mathcal{A} \subseteq 2^M$ (the available masks)

Interpretation: $P_j(\alpha)$ is the processing time of j when j is allowed to migrate over any machine in α

 \Rightarrow migration overheads can be embedded in $P_j(\alpha)$, if desired

Goal: for each job j, find a set $\bar{\alpha}_j \in A$ and a schedule of j on $\bar{\alpha}_j$ that minimizes the makespan

イロト イ理ト イヨト イヨト

An example

$$\begin{split} &J = \{1,2,3\} \\ &M = \{1,2\} \\ &\mathcal{A} = \{\{1\},\{2\},\{1,2\}\} \end{split}$$

j	$P_{j}(\{1\})$	$P_{j}(\{2\})$	$P_j(\{1,2\})$
1	4	∞	∞
2	∞	4	∞
3	7	7	10

A possible solution:

V. Bonifaci (IASI-CNR)

3 **IWES 2017** 8 / 23

э

An example

$$\begin{split} &J = \{1,2,3\} \\ &M = \{1,2\} \\ &\mathcal{A} = \{\{1\},\{2\},\{1,2\}\} \end{split}$$

j	$P_{j}(\{1\})$	$P_{j}(\{2\})$	$P_{j}(\{1,2\})$
1	4	∞	∞
2	∞	4	∞
3	7	7	10

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- 4 ∃ ▶

A possible solution:

Note: simultaneous parallel processing of the same job is not allowed

V. Bonifaci (IASI-CNR)

IWES 2017 8 / 23

• $\mathcal{A} = \{\{1\}, \{2\}, \dots, \{m\}\}$: unrelated machines without migration

- $\mathcal{A} = \{\{1\}, \{2\}, \dots, \{m\}\}$: unrelated machines without migration
- $\mathcal{A} = \{M\}$: identical parallel machines with migration

- $\mathcal{A} = \{\{1\}, \{2\}, \dots, \{m\}\}$: unrelated machines without migration
- $\mathcal{A} = \{M\}$: identical parallel machines with migration
- $\mathcal{A} = \{M, \{1\}, \{2\}, \dots, \{m\}\}$: semi-partitioned scheduling

- $\mathcal{A} = \{\{1\}, \{2\}, \dots, \{m\}\}$: unrelated machines without migration
- $\mathcal{A} = \{M\}$: identical parallel machines with migration
- $\mathcal{A} = \{M, \{1\}, \{2\}, \dots, \{m\}\}$: semi-partitioned scheduling
- $\mathcal{A} = \{\{1, 2, 3, 4\}, \{5, 6, 7, 8\}\}$: clustered scheduling

By varying $\ensuremath{\mathcal{A}}$ we recover classical and newer problems:

- $\mathcal{A} = \{\{1\}, \{2\}, \dots, \{m\}\}$: unrelated machines without migration
- $\mathcal{A} = \{M\}$: identical parallel machines with migration
- $\mathcal{A} = \{M, \{1\}, \{2\}, \dots, \{m\}\}$: semi-partitioned scheduling
- $\mathcal{A} = \{\{1, 2, 3, 4\}, \{5, 6, 7, 8\}\}$: clustered scheduling

In many cases, the family A is hierarchical, or laminar:

• $\alpha, \beta \in \mathcal{A} \Rightarrow \alpha \subseteq \beta \lor \beta \subseteq \alpha \lor \alpha \cap \beta = \emptyset$

We will assume A laminar for our results (the model makes sense even without this assumption)

We call the resulting problem HIERARCHICAL SCHEDULING

$$\mathsf{Say} \qquad \mathcal{A} = \{\{1,2,3\},\{4\},\{5\},\{4,5\},\{1,2,3,4,5\}\}$$

There are never "too many" affinity masks: $|\mathcal{A}| \leq 2m$

HIERARCHICAL SCHEDULING generalizes the $R||C_{\max}$ problem (scheduling on unrelated machines)

 \Rightarrow Computing solutions of makespan less than $\left(\frac{3}{2} - \epsilon\right) \cdot \text{opt}$ is NP-hard (Lenstra, Shmoys & Tardos 1987)

opt: minimum makespan of a solution ϵ : arbitrary positive constant

Let $\rho \ge 1$. A ρ -approximation algorithm outputs, in polynomial time given any HS instance *I*, a solution with makespan $\le \rho \cdot \operatorname{opt}(I)$

Let $\rho \ge 1$. A ρ -approximation algorithm outputs, in polynomial time given any HS instance *I*, a solution with makespan $\le \rho \cdot \operatorname{opt}(I)$

Main Result (B., D'Angelo, Marchetti-Spaccamela)

HIERARCHICAL SCHEDULING admits a 2-approximation algorithm.

• Lenstra, Shmoys & Tardos (1987): $R||C_{\max}|$ admits a 2 approximation

 Lenstra, Shmoys & Tardos (1987): R||C_{max} admits a 2 approximation Nothing better than a 2 - ¹/_m is known, even today

Integer Linear Programming formulation of the problem

- Integer Linear Programming formulation of the problem
- Prove the ILP formulation is exact
 - The ILP constraints are necessary (trivial)
 - Show that given ILP solution (**x**, *T*), one can construct a valid schedule of makespan *T* using the affinity masks described by **x**

- Integer Linear Programming formulation of the problem
- Prove the ILP formulation is exact
 - The ILP constraints are necessary (trivial)
 - Show that given ILP solution (**x**, *T*), one can construct a valid schedule of makespan *T* using the affinity masks described by **x**
- Show how to approximately round the ILP
 - \bullet Leverage the LP structure to redistribute the fractional values on the leaves of ${\cal A}$
 - \bullet Invoke Lenstra-Shmoys-Tardos rounding to get solution $(\bar{x}, 2\mathcal{T})$ with \bar{x} integral

ILP formulation for Semi-Partitioned Scheduling

- p_{ij} : shorthand for $P_j(\{i\})$
- p_{0j} : shorthand for $P_j(M)$
- x_{ij} : 1 if j assigned to machine i, 0 otherwise
- x_{0j} : 1 if j assigned globally, 0 otherwise

ILP formulation for Semi-Partitioned Scheduling

 p_{ij} : shorthand for $P_j(\{i\})$ p_{0j} : shorthand for $P_j(M)$ x_{ij} : 1 if j assigned to machine i, 0 otherwise x_{0j} : 1 if j assigned globally, 0 otherwise

$$\min T \tag{IP-1}$$

$$\sum_{i=0}^{m} x_{ij} = 1 \qquad \text{for } j = 1, \dots, n \qquad (1)$$

$$\sum_{j=1}^{n} p_{ij} x_{ij} \leq T \qquad \text{for } i = 1, \dots, m \qquad (2)$$

$$\sum_{j=1}^{n} \sum_{i=0}^{m} p_{ij} x_{ij} \leq mT \qquad (3)$$

$$p_{ij} x_{ij} \leq T \qquad \text{for } j = 1, \dots, n \text{ and } i = 0, \dots, m \qquad (4)$$

 $p_{\alpha j}$: shorthand for $P_j(\alpha)$ $x_{\alpha j}$: 1 if j assigned affinity mask α , 0 otherwise

$$\sum_{\alpha \in \mathcal{A}} x_{\alpha j} = 1 \qquad \qquad \text{for } j = 1, \dots, n \tag{5}$$

$$\sum_{j=1}^{n} \sum_{\beta \subseteq \alpha} p_{\beta j} x_{\beta j} \le |\alpha| T \quad \text{for each } \alpha \in \mathcal{A}$$
(6)

$$p_{lpha j} x_{lpha j} \leq T$$
 for each $lpha \in \mathcal{A}$ and $j = 1, \dots, n$ (7)

 $t \leftarrow 0; i \leftarrow 0;$ $V \leftarrow \sum_{j=1}^{n} p_{0j} x_{0j};$ while $\underline{V > 0}$ do $i \leftarrow i + 1;$ $\delta \leftarrow \min(V, T - \sum_{j=1}^{n} p_{ij} x_{ij});$ Assign δ units of global jobs to *i*, in the interval $[t, t + \delta \pmod{T}];$ $t \leftarrow t + \delta \pmod{T};$ $V \leftarrow V - \delta;$

foreach machine $i \in M$ and job $j \in J$ such that $x_{ij} = 1$ **do** Schedule j on machine i in the idle time of interval [0, T];

V. Bonifaci (IASI-CNR)

 ▶ < ≣ ▶ ≡</th>
 𝔅 𝔅 𝔅

 IWES 2017
 18 / 23

イロト イヨト イヨト イヨト

V. Bonifaci (IASI-CNR)

э IWES 2017

. ⊒ →

・ロト ・ 日 ト ・ 田 ト ・

Constructing the schedule: Hierarchical case (sketch)

Bottom-up volume allocation phase:

- $\bullet\,$ Traverse ${\cal A}$ from local to global masks
- Compute a "share" $LOAD[i, \alpha]$ of the jobs with mask α on machine i
- Greedily assign the shares to more restricted machines first

Constructing the schedule: Hierarchical case (sketch)

Bottom-up volume allocation phase:

- $\bullet\,$ Traverse ${\cal A}$ from local to global masks
- Compute a "share" $LOAD[i, \alpha]$ of the jobs with mask α on machine i
- Greedily assign the shares to more restricted machines first
- Op-down job assignment phase:
 - $\bullet\,$ Traverse ${\cal A}$ from global to local masks
 - Use the share $LOAD[i, \alpha]$ to assign jobs with $x_{\alpha j} = 1$ to machine i

Bottom-up volume allocation phase:

- $\bullet\,$ Traverse ${\cal A}$ from local to global masks
- Compute a "share" $\text{LOAD}[i, \alpha]$ of the jobs with mask α on machine i
- Greedily assign the shares to more restricted machines first
- Op-down job assignment phase:
 - \bullet Traverse ${\mathcal A}$ from global to local masks
 - Use the share LOAD[i, α] to assign jobs with $x_{\alpha j} = 1$ to machine i

Lemma

If (\mathbf{x}, T) feasible for ILP, there exists a valid schedule with makespan T.

(In particular, no job is simultaneously scheduled on distinct machines)

 $p_{\alpha j}$: shorthand for $P_j(\alpha)$ $x_{\alpha j}$: 1 if j assigned affinity mask α , 0 otherwise

$$\sum_{\alpha \in \mathcal{A}} x_{\alpha j} = 1 \qquad \text{for } j = 1, \dots, n$$

$$\sum_{j=1}^{n} \sum_{\beta \subseteq \alpha} p_{\beta j} x_{\beta j} \le |\alpha| T \qquad \text{for each } \alpha \in \mathcal{A}$$

$$p_{\beta j} \gamma_{\beta j} \gamma_{$$

3 ×

 $p_{\alpha j}$: shorthand for $P_j(\alpha)$ $x_{\alpha j}$: 1 if j assigned affinity mask α , 0 otherwise

$$\sum_{\alpha \in \mathcal{A}} x_{\alpha j} = 1 \qquad \text{for } j = 1, \dots, n$$

$$\sum_{j=1}^{n} \sum_{\beta \subseteq \alpha} p_{\beta j} x_{\beta j} \le |\alpha| T \qquad \text{for each } \alpha \in \mathcal{A}$$

$$p_{\beta j} / p_{\beta j} / p_{$$

Binary search for T

 $p_{\alpha j}$: shorthand for $P_j(\alpha)$ $x_{\alpha j}$: 1 if j assigned affinity mask α , 0 otherwise

$$\sum_{\alpha \in \mathcal{A}} x_{\alpha j} = 1 \qquad \text{for } j = 1, \dots, n$$

$$\sum_{j=1}^{n} \sum_{\beta \subseteq \alpha} p_{\beta j} x_{\beta j} \le |\alpha| T \qquad \text{for each } \alpha \in \mathcal{A}$$

$$p_{\beta j} \gamma_{\beta j} \gamma_{$$

Binary search for TRemove the $x_{\alpha j}$ with $p_{\alpha j} > T$

 $p_{\alpha j}$: shorthand for $P_j(\alpha)$ $x_{\alpha j}$: 1 if j assigned affinity mask α , 0 otherwise

$$\sum_{\alpha \in \mathcal{A}} x_{\alpha j} = 1 \qquad \text{for } j = 1, \dots, n$$

$$\sum_{j=1}^{n} \sum_{\beta \subseteq \alpha} p_{\beta j} x_{\beta j} \le |\alpha| T \qquad \text{for each } \alpha \in \mathcal{A}$$

$$p_{\beta j} \gamma_{\beta j} \gamma_{$$

Binary search for T Remove the $x_{\alpha j}$ with $p_{\alpha j} > T$ Decide either: (a) target T is infeasible, or (b) 2T is feasible

Let **x** be LP-feasible, let $\beta \in \mathcal{A}$ ($|\beta| > 1$). There exists another LP-feasible solution **x**' such that, for each job *j*,

$$\begin{aligned} \mathbf{x}'_{lpha j} &= \mathbf{x}_{lpha j} & \quad ext{whenever } lpha \nsubseteq eta, ext{ and } \\ \mathbf{x}'_{eta j} &= \mathbf{0}. \end{aligned}$$

Let **x** be LP-feasible, let $\beta \in \mathcal{A}$ ($|\beta| > 1$). There exists another LP-feasible solution **x**' such that, for each job *j*,

$$\begin{aligned} \mathbf{x}'_{lpha j} &= \mathbf{x}_{lpha j} & \quad ext{whenever } lpha \nsubseteq eta, ext{ and } \ \mathbf{x}'_{eta j} &= \mathbf{0}. \end{aligned}$$

By repeated application, we remove all LP variables $x_{\alpha j}$ with $|\alpha| > 1$

Let **x** be LP-feasible, let $\beta \in \mathcal{A}$ ($|\beta| > 1$). There exists another LP-feasible solution **x**' such that, for each job *j*,

$$\begin{aligned} \mathbf{x}'_{lpha j} &= \mathbf{x}_{lpha j} & ext{whenever } lpha \nsubseteq eta, ext{ and } \ \mathbf{x}'_{eta j} &= \mathbf{0}. \end{aligned}$$

By repeated application, we remove all LP variables $x_{\alpha j}$ with $|\alpha| > 1$

The LP becomes a standard unrelated machines LP

Let **x** be LP-feasible, let $\beta \in \mathcal{A}$ ($|\beta| > 1$). There exists another LP-feasible solution **x**' such that, for each job *j*,

$$\begin{aligned} \mathbf{x}'_{lpha j} &= \mathbf{x}_{lpha j} & ext{whenever } lpha \nsubseteq eta, ext{ and } \ \mathbf{x}'_{eta j} &= \mathbf{0}. \end{aligned}$$

By repeated application, we remove all LP variables $x_{\alpha j}$ with $|\alpha| > 1$

The LP becomes a standard unrelated machines LP \Rightarrow Invoke any LP-based rounding for $R||C_{max}$ to obtain 2-approximation

Fractional values "push-down" lemma

Intuition: distribute value to children proportionally to their "slack":

$$\operatorname{slack}(\alpha) \stackrel{\operatorname{def}}{=} |\alpha| \cdot T - \sum_{j \in J} \sum_{\beta \subseteq \alpha} p_{\beta j} x_{\beta j}.$$

V. Bonifaci (IASI-CNR)

IWES 2017 22 / 23

Main results

- A tractable scheduling model generalizing some well-studied problems
- Approximability result for the makespan objective with hierarchical affinity structure

Main results

- A tractable scheduling model generalizing some well-studied problems
- Approximability result for the makespan objective with hierarchical affinity structure

Open questions

- What if \mathcal{A} is not hierarchical?
- Other objective functions
- Extensions of our rounding approach

Main results

- A tractable scheduling model generalizing some well-studied problems
- Approximability result for the makespan objective with hierarchical affinity structure

Open questions

- What if \mathcal{A} is not hierarchical?
- Other objective functions
- Extensions of our rounding approach

THANKS!