Efficient FPGA implementation of a Digital Transparent Satellite Processor

G. Marini, V. Sulli, F. Santucci, M. Faccio

University of L’Aquila, L’Aquila, Italy
Outline

• Introduction
• Problem Definition
• Resolution Method
• FPGA Implementation
• Results
• Conclusion
• Future Work
In satellite systems for telecommunications a great deal of interest concerns the **mesh topology**.
Introduction

Four alternatives for the architecture of a satellite transponder:

• Fully transparent payload
• Fully regenerative payload
• Digital transparent payload
• Digital Semi-transparent payload
Four alternatives for the architecture of a satellite transponder:

- Fully transparent payload
- Fully regenerative payload
- Digital transparent payload
- Digital Semi-transparent payload

Digital Transparent Processor (DTP) is involved
Introduction (4)

Four alternatives for the architecture of a satellite transponder:

- Fully transparent payload
- Fully regenerative payload
- Digital transparent payload
- Digital Semi-transparent payload

Digital Transparent Processor (DTP) is involved

- Support of mesh networking
- Flexibility in the routing
- Frequency planning flexibility
Scenario of interest:
• 79 beams (with 125 MHz allocated per beam) with fully connectivity and flexible routing in frequency, time, spatial domains
In this context the digital **semi-transparent payloads** have been recently devised and investigated.
Problem Definition(1)

• A digital transparent/semi-transparent satellite payload can be seen as a hybrid analog-digital on-board chain

• Modelling and design approaches have so far almost missed the ability to capture in an adequate way these important features
Problem Definition (2)

Problem:

To provide a method that, given the link-budget requirement, provides a detailed definition of digital HW components in the DTP
Resolution Method(1)

Step 1:
- Define a System Model of DTP-based Transponder

A DTP processing chain is composed by:
- P_0: ADC
- P_1: Analytical signal extrapolation
- P_2: Channalizer (analysis)
- Switching
- P_3: Channalizer (synthesis)
- P_4: IF signal extrapolation
- P_5: DAC
Step 2:
- Develop an equivalent noise model for the whole DTP chain to understand how link level performance (the DTP noise figure) may impact on the DTP hardware complexity
Resolution Method(3)

Step 3:

• Computing the hardware complexity in terms of:
 i. Number of 2-words multipliers
 ii. Number of 2-words adders
 iii. Number of Flip-Flops
 iv. Number of ROM bits
FPGA Implementation (1)

The DTP is composed by three basic blocks:

- **FIR** filter elements, implemented in direct form
The DTP is composed by three basic blocks:

- **FIR** filter elements, implemented in direct form
- **FFT/IFFT** butterfly structures
The DTP is composed by three basic blocks:

- **FIR** filter elements, implemented in direct form
- **FFT/IFFT** butterfly structures
- **RAM** buffers
Results(1)

To the increase of DTP Noise Figure corresponds a degradation in the link performance shown as a reduction in the Additional Margin at the ground receiver.
The DTP Hardware complexity may be directly linked to the chosen working point.
Results (3)

For a given DTP Noise Figure, different hardware complexity can be obtained by applying different design approaches, e.g.:

- UP: Uniform Parameters
- TO: Trade-Off
- UC: Uniform Contributions
- MR: Minimum RAM
Conclusion

• We have developed a comprehensive framework for **hardware complexity** evaluation of novel satellite payloads that rely on semi-transparent transponder architectures.

• The DTP complexity has been related to the overall processed bandwidth, the selected coding and modulation formats, and performance degradation requirements.
Future Work

• Definition of an optimized criterion for DTP hardware design

• Adaptations of the developed framework to several scenarios of interest in satellite communications
Thanks