Design of Energy/Quality Scalable Hardware By Runtime Voltage Scaling and Back Biasing

Daniele Jahier Pagliari

EDA Group Politecnico di Torino Torino, Italy

TECHNOLOGY RESEARCH INSTITUTE

2nd IWES September 8th , 2017, Rome, Italy

The EDA Group

<u>Electronic Design Automation</u>

- 7 Faculty members
 - Enrico Macii, Massimo Poncino, Alberto Macii, Andrea Acquaviva
 - Elisa Ficarra, Andrea Calimera, Santa Di Cataldo, Sara Vinco
- 4 post-doc researchers
- ~10+ Ph.D. students & Research Assistants
- Three main areas of research:
 - EDA (energy efficiency, EES, etc.)
 - Technologies for Smart Cities (Buildings, Districts, etc.)
 - Bioinformatics

Strong record of EU funded projects

30+ in the last 10 years.

Background and Motivation

- Dynamic V_{DD}/V_{BB}/Accuracy Tuning
- Experimental Results
- Conclusions and Future Work

IoT devices trends:

IoT devices trends:

- Many emerging applications are error tolerant (or error resilient):
 - Recognition, Mining and Synthesis (RMS) domains

IoT devices trends:

- Many emerging applications are error tolerant (or error resilient):
 - Recognition, Mining and Synthesis (RMS) domains

IoT devices trends:

- Many emerging applications are error tolerant (or error resilient):
 - Recognition, Mining and Synthesis (RMS) domains

<u>Approximate Paradigm:</u> Tradeoff energy consumption and output quality leveraging applications error tolerance.

IoT devices trends:

- Many emerging applications are error tolerant (or error resilient):
 - Recognition, Mining and Synthesis (RMS) domains

Approximate Paradigm: Tradeoff energy consumption and output quality leveraging applications error tolerance.

- Two main approaches:
 - Design-time Approximations
 - Quality-Configurable Systems (QCS)

Background - Functional Units

1. Approximate circuits:

Mostly adders and multipliers

Kyaw, Goh and Yeo, EDSSC'10, Huang, Lach and Robins, DAC'12, Farshchi, Saeed and Fakhraie, CADS'13, Jiang, Han and Lombardi, GLSVLSI'15, Bhardwaj, Mane and Henkel, ISQED'15, etc.

2. Approximate synthesis:

Generalization of the previous techniques to any netlist

Shin and Gupta, ATS'08, Venkataramani et al, DAC'12, Miao, Gerstlauer and Orshansky, ICCAD'13, Jahier Pagliari et al, ICCD'15,etc. 3. Quality-configurable circuit architectures:

Arithmetic units

De la Guya Solaz, Han, Conway, IEEE TCAS'11, Kahng and Kang, DAC'12, Ye et al, ICCAD'13, Liu, Han and Lombardi, DATE'14, etc.

• Voltage scalable meta-functions Mohapatra, Chippa, Raghunathan and Roy, DATE'11

4. Dynamic Voltage and Accuracy Scaling (DVAS):

 Use technological knobs only (no design modifications)
 Moons and Verhelst, ISLPED'15, Moons et al, ISSCC'17, etc.

Input Dynamic (Bit-width) ↓

Main Limitation of DVAS: "Wall-of-Slack" phenomenon:

- Synthesis optimizes long paths for timing, short ones for area and power
- Most paths become "almostcritical"

Main Limitation of DVAS: "Wall-of-Slack" phenomenon:

- Synthesis optimizes long paths for timing, short ones for area and power
- Most paths become "almostcritical"

• Example:

• Booth multiplier endpoint histogram.

Main Limitation of DVAS: "Wall-of-Slack" phenomenon:

- Synthesis optimizes long paths for timing, short ones for area and power
- Most paths become "almostcritical"
- When V_{DD} is scaled the number of usable bits decreases rapidly

• Example:

• Booth multiplier endpoint histogram.

Main Limitation of DVAS: "Wall-of-Slack" phenomenon:

- Synthesis optimizes long paths for timing, short ones for area and power
- Most paths become "almostcritical"
- When V_{DD} is scaled the number of usable bits decreases rapidly

• Example:

Booth multiplier endpoint histogram.

Useful bit-width configurations require $V_{DD} \cong V_{DD,NOM}$

Motivation (cont'd)

Contrasting the "Wall of Slack":

• **Solution 1:** modify synthesis constraints.

Overhead in area and power at maximum accuracy.

Motivation (cont'd)

Contrasting the "Wall of Slack":

Solution 1: modify synthesis constraints.

- Overhead in area and power at maximum accuracy.
- Solution 2: finer-grain power/delay tuning
 - Key: in reduced accuracy "modes", not all paths of the circuit require the same "speed"

- Possible solution: multiple VDD
 - Requires level shifters
 - Excessive power overheads for a single FU

- Possible solution: multiple VDD
 - Requires level shifters
 - Excessive power overheads for a single FU
- Our solution: combine DVAS with FDSOI's Back Bias

Possible solution: multiple VDD

- Requires level shifters
- Excessive power overheads for a single FU
- Our solution: combine DVAS with FDSOI's Back Bias

Possible solution: multiple VDD

- Requires level shifters
- Excessive power overheads for a single FU
- Our solution: combine DVAS with FDSOI's Back Bias

Fine-grain threshold voltage (V_{th}) tuning in addition to V_{DD} assignment

Possible solution: multiple VDD

- Requires level shifters
- Excessive power overheads for a single FU
- Our solution: combine DVAS with FDSOI's Back Bias

Advantages:

- Fine-grain speed/power control
- V_{DD} possibly shared with other FUs
- No level shifters; Well insulation trenches (area overhead only)

assignment

Issue with V_{BB} assignment:

- Cannot apply independent V_{BB} to each cell
- Partition in V_{BB} domains is required

Issue with V_{BB} assignment:

- Cannot apply independent V_{BB} to each cell
- Partition in V_{BB} domains is required

Issue with V_{BB} assignment:

- Cannot apply independent V_{BB} to each cell
- Partition in V_{BB} domains is required

Proposed partitioning: Regular Tiling

Issue with V_{BB} assignment:

- Cannot apply independent V_{BB} to each cell
- Partition in V_{BB} domains is required

Proposed partitioning: Regular Tiling

- Regularity of design
- Easy to incorporate in EDA flow
- Minimal displacement of cells

Issue with V_{BB} assignment:

- Cannot apply independent V_{BB} to each cell
- Partition in V_{BB} domains is required

Max. power

Proposed partitioning: Regular Tiling

Pros:

- **Regularity of design**
- Easy to incorporate in EDA flow
- Minimal displacement of cells

Minimal timing, area and power overheads at maximum accuracy.

Experimental Results

Designs:

- Booth multiplier
- FFT Butterfly unit
- 30-tap FIR filter
- 16-bit fixed-point implementations

Experimental Results

Designs:

- Booth multiplier
- FFT Butterfly unit
- 30-tap FIR filter
- 16-bit fixed-point implementations

Operating Conditions:

- V_{DD} = [0.6V, 0.7V,...1.0V]
- Forward BB: V_{BB} = ±1.1V (N-Well/P-Well)

Experimental Results

Designs:

- Booth multiplier
- FFT Butterfly unit
- 30-tap FIR filter
- 16-bit fixed-point implementations

Operating Conditions:

- V_{DD} = [0.6V, 0.7V,...1.0V]
- Forward BB: V_{BB} = ±1.1V (N-Well/P-Well)

Design	Area [mm²]	Clock Freq. [GHz]	# of V _{BB} Domains
Booth	2.59e-03	1.25	2 x 2
Butterfly	7.71e-03	1.00	3 x 3
FIR	9.10e-03	0.75	3 x 3

Booth Multiplier

- Plots: Minimum power configuration for each accuracy
- Combining (global) V_{DD} scaling and fine-grain back-biasing

Booth Multiplier

- Plots: Minimum power configuration for each accuracy
- Combining (global) V_{DD} scaling and fine-grain back-biasing
- Comparison:
 - DVAS with No Back Biasing (NoBB)
 - DVAS with FBB in the entire circuit

Booth Multiplier

- Plots: Minimum power configuration for each accuracy
- Combining (global) V_{DD} scaling and fine-grain back-biasing
- Comparison:
 - DVAS with No Back Biasing (NoBB)
 - DVAS with FBB in the entire circuit
- 32.7% Saving w.r.t. DVAS @ 10-bit accuracy!

FIR Filter

- "Wall-of-Slack" clearly visible
- Maximum DVAS + FBB accuracy (without violations):
 - 15-bit @ 0.9V
 - Only 4-bit @ 0.8V!

FIR Filter

- "Wall-of-Slack" clearly visible
- Maximum DVAS + FBB accuracy (without violations):
 - 15-bit @ 0.9V
 - Only 4-bit @ 0.8V!

FIR Filter

- "Wall-of-Slack" clearly visible
- Maximum DVAS + FBB accuracy (without violations):
 - 15-bit @ 0.9V
 - Only 4-bit @ 0.8V!
- 39.9% Saving w.r.t. DVAS @ 10-bit accuracy!

FFT Butterfly

- Large number of V_{BB} domains (3 x 3) compared to relatively small circuit area
- Power overheads more significant
- Also, "Wall-of-Slack" less visible (circuit probably under constrained)
- Still 16.5% saving w.r.t. DVAS @ 8-bit!

Impact of V_{BB} Domains

Number of V_{BB} domains vs power saving (Booth Mul.):

Impact of V_{BB} Domains

Number of V_{BB} domains vs power saving (Booth Mul.):

Number of V_{BB} domains vs overheads (Booth Mul.):

Conclusions:

 Back-Bias is an effective knob for fine-grain delay/power tuning in quality-configurable functional units.

Conclusions:

- Back-Bias is an effective knob for fine-grain delay/power tuning in quality-configurable functional units.
- Combined with global V_{DD} scaling, this method
 overcomes the limitations of DVAS, by contrasting the "Wall-of-slack" phenomenon.

Conclusions:

- Back-Bias is an effective knob for fine-grain delay/power tuning in quality-configurable functional units.
- Combined with global V_{DD} scaling, this method
 overcomes the limitations of DVAS, by contrasting the "Wall-of-slack" phenomenon.
- First ever application of Back-Biasing to Quality Configurable Systems (to our knowledge).

Conclusions:

- Back-Bias is an effective knob for fine-grain delay/power tuning in quality-configurable functional units.
- Combined with global V_{DD} scaling, this method
 overcomes the limitations of DVAS, by contrasting the "Wall-of-slack" phenomenon.
- First ever application of Back-Biasing to Quality Configurable Systems (to our knowledge).

Future Developments:

 Devise method for runtime update of V_{BB} domains configurations depending on operating conditions (PVT, aging, etc.)

Conclusions:

- Back-Bias is an effective knob for fine-grain delay/power tuning in quality-configurable functional units.
- Combined with global V_{DD} scaling, this method
 overcomes the limitations of DVAS, by contrasting the "Wall-of-slack" phenomenon.
- First ever application of Back-Biasing to Quality Configurable Systems (to our knowledge).

Future Developments:

- Devise method for runtime update of V_{BB} domains configurations depending on operating conditions (PVT, aging, etc.)
- Investigate alternative partitioning techniques (irregular tiling).

1. Implementation Phase:

- Partition circuit in VBB domains using regular tiling.
- Incremental placement:
 - Insert well-taps
 - Fix possible constraints violations due to cell displacement.

Implementation Flow

2. Analysis Phase:

- Exhaustive exploration of all possible configs of Accuracy, $V_{\rm BB},$ and $V_{\rm DD}$
- STA to prune unfeasible configurations (timing violations)
- Power analysis on feasible configs

Complexity

- Many configurations (thousands), but fast analysis.
- Feasible for < 10-15 V_{BB} domains

