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The	EDA	Group
§ Electronic	Design	Automation

§ 7	Faculty	members
§ Enrico	Macii,	Massimo	Poncino,		Alberto	Macii,	
Andrea	Acquaviva

§ Elisa	Ficarra,	Andrea	Calimera ,	Santa	Di	Cataldo,	
Sara	Vinco

§ 4	post-doc	researchers
§ ~10+	Ph.D.	students	&	Research	Assistants

§ Three	main	areas	of	research:
§ EDA		(energy	efficiency,	EES,	etc.)
§ Technologies	for	Smart	Cities	(Buildings,	Districts,	etc.)
§ Bioinformatics

§ Strong	record	of	EU	funded	projects
§ 30+	in	the	last	10	years.
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• Two main approaches:  
• Design-time Approximations
• Quality-Configurable Systems (QCS)



9

Background	- Functional	Units
1. Approximate circuits:

• Mostly adders and multipliers
Kyaw, Goh and Yeo, EDSSC’10, 
Huang, Lach and Robins, DAC’12, 
Farshchi, Saeed and Fakhraie, 
CADS’13, Jiang, Han and Lombardi, 
GLSVLSI’15, Bhardwaj, Mane and 
Henkel, ISQED’15, etc.

2. Approximate synthesis:
• Generalization of the previous 

techniques to any netlist
Shin and Gupta, ATS’08, 
Venkataramani et al, DAC’12, Miao, 
Gerstlauer and Orshansky, ICCAD’13, 
Jahier Pagliari et al, ICCD’15,etc.

3. Quality-configurable 
circuit architectures:

• Arithmetic units
De la Guya Solaz, Han, Conway, 
IEEE TCAS’11, Kahng and Kang, 
DAC’12, Ye et al, ICCAD’13, Liu, Han 
and Lombardi, DATE’14, etc.
• Voltage scalable meta-functions
Mohapatra, Chippa, Raghunathan and 
Roy, DATE’11

4. Dynamic Voltage and 
Accuracy Scaling (DVAS):

• Use technological knobs only 
(no design modifications)

Moons and Verhelst, ISLPED’15, 
Moons et al, ISSCC’17, etc.
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Background	- DVAS

Input Dynamic 
(Bit-width) ↓

Switching 
Activity ↓

Dynamic 
Power ↓

Slack ↑

Supply 
Voltage ↓

Leakage
Power ↓ 

§ Pros of DVAS:
• No overheads at max. accuracy (*)
• Bounded error
• Many quality configurations (N-bit)
• Architecture-independent
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power

§ Most	paths	become	“almost-
critical”

§ When	VDD is	scaled	the	number	of	
usable	bits	decreases	rapidly

• Example:
• Booth multiplier endpoint 

histogram.

Useful bit-width configurations require VDD ≅ VDD,NOM

0.90V
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Motivation	(cont’d)
Contrasting	the	“Wall	of	Slack”:
§ Solution	1:modify	synthesis	constraints.

§ Overhead	in	area	and	power	at	maximum	accuracy.
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Motivation	(cont’d)
Contrasting	the	“Wall	of	Slack”:
§ Solution	1:modify	synthesis	constraints.

§ Overhead	in	area	and	power	at	maximum	accuracy.
§ Solution	2:	finer-grain	power/delay	tuning

§ Key: in	reduced	accuracy	“modes”,	not	all	paths of	the	circuit	
require	the	same	“speed”
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Fine-grain	power/delay	tuning
§ Possible	solution:	multiple	VDD

§ Requires	level	shifters
§ Excessive	power	overheads	for	a	single	FU

§ Our	solution:	combine	DVAS	with	FDSOI’s	Back	Bias

§ Fine-grain	threshold	voltage	(Vth)	tuning	in	addition	to	VDD
assignment

Advantages:
• Fine-grain	speed/power	control
• VDD possibly	shared	with	other	FUs
• No	level	shifters;	Well	insulation	trenches	(area	overhead	

only)
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Dynamic	VDD/VBB/Accuracy	Tuning
Issue	with	VBB assignment:	
§ Cannot	apply	independent	VBB
to	each	cell	

§ Partition	in	VBB domains	is	
required

Max.	accuracy
Max.	power

Min.	accuracy
Min.	power

…

Proposed	partitioning:	
Regular	Tiling	

Insulation
TrenchOriginal 

placement
Placement 

with VBB
Domains

Pros:
• Regularity	of	design
• Easy		to	incorporate	in	EDA	flow
• Minimal	displacement	of	cells

Minimal	timing,	area	and	power	
overheads	at	maximum	accuracy.
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Experimental	Results

Designs:
§ Booth	multiplier
§ FFT Butterfly	unit
§ 30-tap	FIR filter
§ 16-bit	fixed-point	
implementations

Operating Conditions:
• VDD =	[0.6V,	0.7V,…1.0V]
• Forward	BB:	VBB =	±1.1V	(N-
Well/P-Well)

Design Area 
[mm2]

Clock
Freq. 
[GHz]

# of VBB
Domains

Booth 2.59e-03 1.25 2 x 2
Butterfly 7.71e-03 1.00 3 x 3

FIR 9.10e-03 0.75 3 x 3
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Comparison	with	DVAS

FFT	Butterfly
§ Large	number	of	VBB domains	
(3	x	3)	compared	to	relatively	
small	circuit	area

§ Power	overheadsmore	
significant

§ Also,	“Wall-of-Slack”	less	visible	
(circuit	probably	under	
constrained)

§ Still	16.5%	saving	w.r.t.	DVAS	
@	8-bit!
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Impact	of	VBB Domains

§ Number	of	VBB domains	vs	
power	saving	(Booth	Mul.):
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Impact	of	VBB Domains

§ Number	of	VBB domains	vs	
power	saving	(Booth	Mul.):

§Number	of	VBB domains	vs	
overheads	(Booth	Mul.):
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Conclusions	and	Future	Work
Conclusions:
§ Back-Bias	is	an	effective	

knob	for	fine-grain	
delay/power	tuning in	
quality-configurable	
functional	units.

§ Combined	with	global	VDD
scaling,	this	method	
overcomes	the	limitations	
of	DVAS,	by	contrasting	the	
“Wall-of-slack”	
phenomenon.

§ First	ever	application	of	
Back-Biasing	to	Quality	
Configurable	Systems (to	
our	knowledge).

Future	Developments:
§ Devise	method	for	runtime	

update of	VBB domains	
configurations	depending	on	
operating	conditions	(PVT,	
aging,	etc.)

§ Investigate	alternative	
partitioning	techniques	
(irregular	tiling).
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Implementation	Flow

30 March 2017 Jahier Pagliari, Politecnico di Torino, CEA Leti 52

First	Placement

Insertion	of	VBB
Domains

Incremental	
Placement

Netlist	
(.v/.vhd)

Parasitics
(.spef)

Netlist	(.v)
and	GDSII

Optimal	
Configs.
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Parameters
(N,	VDD,	VBB,	B)

1. Implementation	Phase:
• Partition	circuit	in	VBB	domains	using	
regular	tiling.

• Incremental	placement:
• Insert	well-taps
• Fix	possible	constraints	violations	
due	to	cell	displacement.
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Implementation	Flow

First	Placement

Insertion	of	VBB
Domains

Incremental	
Placement

Netlist	
(.v/.vhd)

Parasitics
(.spef)

Netlist	(.v)
and	GDSII

STA	(Filter)

Power	Analysis

Optimal	
Configs.
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Synopsys
PrimeTime

Parameters
(N,	VDD,	VBB,	B)

∀ Configs.

Violation?
Y N

2. Analysis	Phase:
• Exhaustive	exploration	of	all	possible	
configs of	Accuracy,	VBB,	and	VDD

• STA to	prune	unfeasible	
configurations	(timing	violations)

• Power	analysis	on	feasible	configs

• Complexity
• Many configurations (thousands), 

but fast analysis. 
• Feasible for < 10-15 VBB domains

(…)
C0 C1 C510 C511

Forward	BB No	BB

1V,	32bits
…

0.6V,	8bits


