
A Co-Simulation Framework
for Engine Control Applications

Paolo Pazzaglia, Marco Di Natale, Giorgio Buttazzo

Scuola Superiore Sant’Anna, Pisa

paolo.pazzaglia@santannapisa.it

Roma, September 8th, 2017

The Diesel engine control problem

• Challenging CPS problem

 Complex physical components

 High number of electronic control components

 Periodic, aperiodic and angular triggered tasks

• Does not need hard real time constraints (resilient to deadline

misses)

• …However perfomance sensitive to jitter and delays! 2

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

Sensors

Actuators

CPU

3

• Study the effects of scheduling policies and task design on
performance of control applications

 Evaluation with simulation tools

• Verify assumptions on the performance functions with respect to
timing

Proposed solution:

• Co-simulation framework developed on Simulink with a
scheduling simulator integrating:

Model of the engine

Model of the tasks and scheduler

Model of the functional controls

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

Objectives and framework

Animation by Zephyris - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=10896588

• Fuel quantity and timing vary with
engine conditions

• Fuel injection must be precise to
assure optimal combustion process

• Injection errors could compromise
engine functionality

4

• Fuel injection is an example of task with temporal constraints

• It is the main component of control

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

Injection problem in engine control

Potential overload at high speeds!

• Task managing the fuel

injection is an angular task:

• Angular tasks are activated at

a specific crankshaft angle

• The angular deadline and

period are fixed, but timing

depends on engine speed

Deadline

Activation

Activation rate depends on crankshaft speed:

Period

Angular task

5

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

C3C3C3

• Solution: Multiple control modes with WCET decreasing at high
speeds: Adaptive Variable Rate (AVR) task

• Mode changes happen at particular switching speeds

6

Adaptive Variable Rate

C2 C2 C3C1 C1

1 2

C(1)

C(2)

C(3)

1

2

3

speed time

timeWCET

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

7

• For the purposes of this work we model mode changes only varying the
number of injections

• Multiple injections help controlling

combustion parameters

Triple injection

Double injection

Single injection

WCET

Engine speed

Adaptive Variable Rate

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

8

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

TPU and deadline misses

Sensors

CPU

Engine ctrl

TPU

ENGINE

cranskhaft

injectors

𝜃𝑓 , ∆𝑓

𝜃, 𝜔

Engine
parameters

𝜃0

• The Time Processing Unit (TPU) is a co-microcontroller that handles
the injection actuation in synchronous modality

• Missing a deadline on the control task means that the actuation is
done with data of previous cycle

𝜏

9

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

TPU and deadline misses

Sensors

CPU

Engine ctrl

TPU

ENGINE

cranskhaft

injectors

𝜃𝑓 , ∆𝑓

𝜃, 𝜔

Engine
parameters

𝜃0

𝜏

Deadline misses can be penalizing if the conditions of the
system changed (too much) from the previous iteration!

Scheduling as design optimization

• Performance is strictly related to timing, but its sensitivity varies
with status and its dynamics

• Performance functions not independent from past!

• Also, multiple performance indexes must be addressed (power,
efficiency, emissions, noise, fuel consumption…)

• Scheduling in engine control problem should be a design
optimization using performance functions

10

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

The co-simulation framework

Engine
model

Control
Functions

Scheduling simulator

Sensors

Actuation

Control

Unit

Simulink

11

T-RES

A co-simulation framework to test different scheduling and control
strategies and their impact on performance

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

Discrete events

Task
implementation

of controls

Simulink
Scheduler
interface

Continuous time

specialized profile, built on top of the OMG standard
MARTE (Modelingand Analysisof Real-Timeand Embed-
ded systems) [10] profile, isused for modeling embedded
platforms and systems, including multicorecomputation
nodes, networks, scheduling and resource management
policies on nodes, and arbitration policies for message
transmission on networks.

The mapping model associates functional elements
to tasks, tasks to processing (HW) elements, signals to
messagesand messages to networks. Themapping model
is defined in SysML, by leveraging and extending the
standard concept of Allocation. When theSysML model
of the functionality mapped onto theplatform is complete,
Matlab codeisgenerated from theSysML model using the
Acceleo [25] open model-to-text generator. Thegenerated
codeoperateson theoriginal Simulink model and addsto it
a set of custom blocks(with connections), representing the
implementationof theSimulink subsystemsof thecontroller
in tasks, execut ing under the cont rol of a scheduler.

Figure 1. The development flow for the proposed Model-Driven
approach.

I I I . A r chit ect ur e Over v iew

Thearchitectureof theco-simulation environment for
theevaluation of the impact of scheduling and communica-
tion delayson theperformanceof controls issummarized
in Figure 2.

Simulink Simulation engine

OMNeT++NS−3

RTSim

MetaSim

abstract network sim API

...

abstract scheduling sim API

adaption layer

o
th

e
r

adaption
layer

adaption
layer

extensionextension

kernel

network

Simulink S−function API

Custom blocks

TRes libraryStandard blocks

Co−simulation framework

task

message

P
la

n
t

C
o

n
tr

o
lle

r

Figure 2. The system co-simulation of the plant and functional
cont rols with the task and network scheduling parts.

Themaster simulation engineisSimulink. At simulation
time, theSimulink enginecomputes themodel update in
an outer loop, in which major stepsareevaluated. A major
step isa point in time in which the inputsand outputsof

themodel blocksarecomputed and updated. Insideeach
major step, an inner loop on minor steps isused to update
the cont inuous parts of the model.

Our real-timescheduling simulator is implemented as
a set of custom blocks that execute at all major steps
and interact with theSimulink main engine(capturing the
relevant events from the simulated environment).

Every timeamajor stepoccurs, theblocksimplementing
the kernels and networks are invoked and process (if
there is any) the task and message arrival events and any
other event that isactiveat thesametime. Theseevents
are forwarded to the real-time and network scheduling
simulators, respectively, and cause an update of their
internal structures. Thekernel and network Simulink blocks
will then query thescheduling and network simulators to
determinefuturerelevant eventsand then usetheSimulink
API todefinemajor stepsin thesimulation at all thepoints
in time in which a scheduling event (for oneof thesystem
tasks or messages) occurs.

In our project, the real-time scheduling and the net-
work simulator engines are not implemented directly in
thecustom kernel and network blocks (as in TrueTime).
Thescheduling simulator isaccessed through an abstract
interface that mediates between the code of the custom
kernel block andagenericreal-timesimulator. Thisabstract
interfaceallows to useany scheduling simulator provided
that the user writes an adaption layer that consists of
a concrete implementation of three generic classes for
scheduler, tasksand events. To providean example, and
allow for self-contained useof theproject, such adaption
layer has already been written and made available for
the open source RTSim project (rtsim.sssup.it). RTSim
supports multi-core architectures with global scheduling
policies. A similar layer will abstract thenetwork simulation
engineandallowfor thereuseof existingnetwork simulators.
Currently, we are defining the abstract interfaces (and
adaptation layers) that allow for the (re)use of the very
well known projects OMNet+ + and NS-3.

For theexecutionandschedulingof tasks, our framework
assumes the same model as in TrueTime (which is also
suited to thetypical codegeneration process for Simulink
models). The execution of a task is split in units called
segments, informally corresponding to theexecution of a
function called by the task main code. Each segment is
identified by an execution time (possibly according to a
given distribution) and all segments in a task areexecuted
according to a pre-defined sequence. Thetimeduration of
each segment correspondsto theexecution timeof thecode
implement ing one subsystem in the Simulink model.

In moredetail, thereal-timetask execution of Simulink
models on single- and multi-core platforms is realized
through two custom blocks: Ker nel and Task (shown in
Figure3). Theinteractionsbetween theSimulink simulation
engineand our custom blocksoccur through thestandard
set of Simulink API functions that allow to set inputsand
outputs and force a simulat ion event .

The block Ker nel models a real-time kernel and the
scheduler insideit on asingle- or multi-corenodeaccording
toagiven schedulingpolicy. Each task ismodeled with one

T-Res: a co-simulation framework

Custom blocks in model

Abstract API

Scheduling

and

network

simulators

• T-Res manages activation, termination and preemption of tasks

• Inserts scheduling delays in the simulation

12

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

Functional (Control)
model

Scheduler and Task
model

1 block for scheduler 1 block for each task

From and to
physical model

T-Res: Adding scheduling to Simulink

13

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

• Adding the “active mode” input

• Every mode is constructed as a sequence of instructions (segments),
with different WCET

• The deadline of the AVR task is dynamically updated as the speed of
the engine changes, and provided to RTSim

A Co-Simulation Framework for Engine Control Applications P. Pazzaglia

Mode selector

14

T-Res: Custom block for AVR tasks

• An example of the implementation of an AVR task in T-Res

Current setting:

Three fuel control modes:
1. Triple injection [0-1500]
2. Double injection [1200-3000]
3. Single injection [2800-v_max]

A Co-Simulation Framework for Engine Control Applications P. Pazzaglia
15

T-Res: AVR task implementation

Matlab Simulink architecture

16

Simulink implementation: continuous+discrete simulation

Control Unit reads data
from sensors and
computes actuation
commands

Physical structure

Control Unit

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

The engine model

17

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

• Engine dynamics

• Modeling multiple cylinders with a
general cylinder block

Cylinders dynamics Crankshaft torque

generation

In-cylinder dynamics

18

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

The cylinder block includes:

• Mechanical model of valves, crank-rod

mechanism, torque generation and

thermodynamic efficiency

• Injector dynamics

• Heat Release model of combustion

• Semiempirical emission models of NOx and soot

Engine Control

19

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

1
2 3

4

• Injection angle control is formally split into two AVR tasks

• Tasks activation every half crankshaft rotation

• Phased by 90°

• Control done with static maps

AVR task: TDC1, TDC4

AVR task: TDC3, TDC2

A1B3, A4B2A3B1, A2B4

20

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

• Simulating specific patterns of input pedals:

 Slow acceleration

 Step acceleration

• Studying the performance index as a function of control modes and
speed

• Showing how the scheduling delays result in errors in the
angle/duration of the injection actuation and the corresponding
loss in performance

Simulations

21

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

• Multiple injections reduce emissions:

Multiple injections and performance

23

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

• How thermodynamic efficiency changes with:

 1 deadline miss every two cycles

 2 deadline misses every two cycles

Studying how timing impacts performance

24

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

Studying how timing impacts performance

Sudden acceleration

25

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

• Co-simulation framework of engine and control for obtaining
more precise dependencies between timing and functionality

• Promising first results when considering multiple injections with
respect to multiple performance metrics

• Need even better engine models!

• Need more accurate models of controls

Conclusion

26

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

• Better characterization of deadline miss impact on performance

• Integrate everything in a workflow for improving design of
controller and scheduler

• Extend TRes framework for multicore support

• Include network model and memory access

Future work

27

P. PazzagliaA Co-Simulation Framework for Engine Control Applications

Thank you!

Any questions?

