
An Optimized Task -Based
Programming Model for
Embedded Many -core
Computing Platforms

Giuseppe Tagliavini
Andrea Marongiu

Luca Benini

Contact : giuseppe.tagliavini@unibo.it

IWES 2017, Rome

• Introduction
• OpenMP tasking model
• Main contributions
• Experimental results
• Conclusion

Many-core accelerators…

• Many-core accelerators are a promising solution for energy- efficient
embedded computing systems

• Clustered parallel accelerators � multiple clusters that are equipped with
processing units tightly-coupled with a shared low-latency L1 scratchpad
memory.

System INTERCONNECT

DRAM
mem CTRL

CPU

MMU

L2 $

CPU

MMU

L2 $

Coherent interconnect

L1 $ L1 $
…

…
0 1 15

Shared-memory CLUSTER
SPM

Kalray MPPA
16 cluster � 16 core = 256 core

… with proper SW support

• Clustered many-core designs offer tremendous
GOps/Watt, and parallel potential…
• ..but extracting peak performance at application level remains hard

• Traditional form of parallelism exploited in large systems is
data-parallelism
• e.g, loop based

• New applications expose irregular/structured parallelism
• Often, more levels (nested parallelism)

• Need for programming abstractions to support parallelism in
an elastic/dynamic way

• Flexible and scalable solution � OFFLOADING + TASKING

Offload model

Main requirement:
PREDICTABILITY

• Introduction
• OpenMP tasking model
• Main contributions
• Experimental results
• Conclusion

OpenMP tasking

We propose a fully compliant implementation of
OpenMP tasking for embedded parallel accelerator
with ultra-low overhead , higher performance and
higher predictability compare to current OpenMP
implementations

• Why OpenMP?
• Widely adopted programming model for shared memory systems
• Several implementation for embedded system are available
• Simple pragma-based programming interface

OpenMP tasking model

OpenMP defines task scheduling points (TSP) in a program, where the encountering task
can be suspended and the hosting thread can be rescheduled to a different task.

• A task graph is dynamically constructed at runtime

#pragma omp parallel
{
#pragma omp single
{
#pragma omp task /* TSP */
{
do_work()
#pragma omp task /* TSP */
do_work()

}
#pragma omp task /* TSP */
do_work()

} /* TSP */
} /* TSP */

T1.1

T1 T2

SEQ

Task queue

Team

TSP…

POP &

EXECUTE

Waiting threads

PUSH

• Introduction
• OpenMP tasking model
• Main contributions
• Experimental results
• Conclusion

Task types

• Tied task (default)
• If suspended, it can later only be resumed by the same thread that originally started it
• Trade-off between ease of programming and scheduling flexibility

• Untied task
• If suspended, they can later be resumed by any thread
• Significantly increasing the achievable parallelism and schedulability

#pragma omp parallel
{
#pragma omp single
{
#pragma omp task /* TSP */
{
do_work()
#pragma omp task /* TSP */
do_work()

}
#pragma omp task /* TSP */
do_work()

} /* TSP */
} /* TSP */

Task scheduling

• Breadth-first scheduling (BFS)

• The parent task creates all the
children tasks and pushes them
in the working queue continuing
the execution until the end of task

• Tends to be more demanding in
terms of memory

• Work-first scheduling (WFS)

• Suspends the parent task and start
execution of the new task

• Lower demands of memory

• Better data locality � follow the
path of the original sequential
program

• Needs untied tasks

8-Sep-17

T4 T6T3 T5

T1 T2

T0

T4 T6
T3 T5

T1 T2

T0

1

2
3

4

1

2 3

Cost of tasking

• Time overheads
• The applicability of the tasking approach to embedded many-core

accelerators is often limited to coarse-grained tasks
• The runtime must support fine-grain tasks to exploit in a efficient way

parallel workloads

• Space overheads
• In resource-constrained systems that are based on space-limited

scratchpad memory, is very important having RTE with a low memory
footprint to leave as much as possible memory to the application data

Two key issues must be addressed for runtimes based
on tasking:

• Introduction
• OpenMP tasking model
• Main contributions
• Experimental results
• Conclusion

Offload on ERIKA/Kalray MPPA

• Different implementation of
synchronization primitives
– BLOCK_IMMEDIATE the

condition is checked in a busy
waiting loop;

– BLOCK_OS informs the OS
that the OpenMP thread is
“idle”. The OS can then block
this thread and schedule
another one in the ready
queue;

– BLOCK_NO (LIMITED
PREEMPTION) informs the OS
that the OpenMP thread has
reached a TASK SCHEDULING
POINT. If a higher-priority
thread is found in the ready
queue it gets scheduled.

Fairly high cost for offload startup on clusters

(parallel). Main reason is management of non-

coherent caches

Synthetic benchmarks

n
0

n
2

n
3

n
4

n
5

n
6

n
8

n
16

n
17

n
18

n
19

n
20

n
21

n
10

n
11

n
12

n
13

n
14

…

n
7

n
15

n
1

n
9

n
0

n
1

n
2

n
3

n
4

n
5

n
6

…

n
0

n
2

n
3

n
4

n
5

n
6

…n
7

n
1

LINEAR PATTERN

RECURSIVE PATTERN

MIXED PATTERN

TIED vs UNTIED: linear

0

2

4

6

8

10

12

14

16

1 5 7.5 10 50 100 500 1000

S
p
e
e
d
u
p

Task granularity [Kcycles]

untied WFS

untied BFS

tied BFS

tied WFS

No relevant difference between WFS / BFS and tied/u ntied tasks!

TIED vs UNTIED: recursive

0

2

4

6

8

10

12

14

16

1 5 7.5 10 50 100 500 1000

S
p
e
e
d
u
p

Task granularity [Kcycles]

untied WFS

untied BFS

tied BFS

tied WFS

Untied tasks with WFS achieve the maximum speedup

???

TIED vs UNTIED: mixed

0

1

2

3

4

5

6

7

8

1 5 10 50 100 1000

S
p
e
e
d
u
p

Task granularity [Kcycles]

OPT untied

OPT tied

IDEAL untied

IDEAL tied

?????????

???

Using tied tasks, 14 cores are allocated to execute the linear part of the
application � 7 are blocked by the taskwait directive

Comparison with other embedded
runtimes (recursive pattern)

0

2

4

6

8

10

12

14

16

1 5 7.5 10 50 100 500 1000

S
p
e
e
d
u
p

Task granularity [Kcycles]

OUR untied (CO)

OUR tied (CO)

KALRAY

DATE13

SIM untied

KALRAY (CO)

Low-granularity tasks

Near-ideal speedup for one order of
magnitude smaller tasks

• Introduction
• OpenMP tasking model
• Main contributions
• Experimental results
• Conclusion

• Optimized runtime for OpenMP tasking
• Support of untied tasks based on lightweight co-routines
• Data structure policies to reduce memory footprint
• Allocation policies to reduce task creation time
• Cut-off policies to reduce execution time

• Work in progress and evolutions:
• Impact of tasking on alternative architectural templates
• Offload on heterogeneous platforms
• Integration with alternative programming models (OpenCL,

OpenVX, CUDA, …)

Where we are, where we are going

Questions? Ideas?
Contact : giuseppe.tagliavini@unibo.it

Work supported by EU-funded ERC advanced project

