
Department of Mathematics, University of Padua

Ravenscar-EDF
Comparative Benchmarking of an

EDF Variant of a Ravenscar Runtime

Ada Europe 2017
22nd Int’l Conference on Reliable Software Technologies

Paolo Carletto: carletto.paolo@gmail.com
Tullio Vardanega: tullio.vardanega@math.unipd.it

June 13, 2017



5/16

The RM-to-EDF Transformation Process
Turning Priorities into Deadlines

Deadline 
Ordered 
Ready 
Queue

Task T

Shared 
Resource
under DFP

Wait on
PO (Entry) Wait

Ready

Running 
Queue

Select

PO (Exit) Delay_until (Enter)

Switch

Ext_itSignal

Time 
Ordered 

Suspended 
Tasks 
Queue

Clock_itSelect

Switch

Interrupt

1. Task Dispatching Policy: from “FIFO Within Priorities” to “EDF”1
2. Locking Policy: from IPCP to DFP2

1A. Burns, An EDF Runtime Profile based on Ravenscar. Ada Lett. 33, 1 (June 2013)
2A. Burns and A. Wellings. The Deadline Floor Protocol and Ada. Ada Lett. 36, 1 (July 2016)

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



6/16

The RM-to-EDF Transformation Process
Implementation Challenges

Interrupt handling intrinsically assumes priorities, which – in principle – do
not belong in an EDF system

I Our solution reserves a fictitious position at the top of the ready queue
for the current interrupt handler

I If an interrupt handler is active, that position is used and the
deadline-based part of the queue is frozen

I If no interrupt is running, that position is not in use and cannot be
contended

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



7/16

Evaluation Results
Buttazzo’s Analysis

Buttazzo claimed EDF better than RM (FPS) in many respects

I Lower runtime overhead
I Less preemptions

I Easier analysis
I More robust under
overloads

I Transient
I Permanent

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



8/16

Evaluation Results
Beyond Buttazzo’s Results

What is weak in Buttazzo’s analysis?
I Task cardinality too small (10-30 tasks) to be significant
I Overload analysis confined to specific cases and not sufficiently general
I Different preemption behavior observed under 100%

I Lack of practical implementation and analysis of resource sharing
protocols

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



9/16

Evaluation Results
Highest Schedulable Utilization

Which tasksets achieved the highest schedulable utilization in each
runtime variant?

Taskset Type Task
Types

Delta
Schedulable
Utilization

Max
CPU
Load

EDF FPS

RC DM PR RC DM PR

Constrained Short & Mid 2,89% 105,50% 30.714 0 3.637 29.850 415 6.202

Implicit Mid Only 3,72% 102,63% 18.691 0 837 18.021 673 2.040

Constrained All 0,05% 104,06% 24.398 0 5.131 24.409 0 5.211

Implicit All 5,22% 100,85% 24.935 953 6.309 26.236 0 5.715

I RC: count of regular completions
I DM: count of deadline misses
I PR: count of preemptions

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



10/16

Evaluation Results
Runtime Overhead

Do the less preemptions and context switches that EDF incurs justify the
higher costs of its scheduling operations?

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



10/16

Evaluation Results
Runtime Overhead

Do the less preemptions and context switches that EDF incurs justify the
higher costs of its scheduling operations?

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



11/16

Evaluation Results
Resilience to Overload Situations

What happens to EDF and FPS under overload conditions, when the
CPU utilization exceeds 100%?

I FPS presents a linear behavior
I EDF’s behaviour varies dramatically depending on the nature of the
overload situation

I Transient vs permanent

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



12/16

Evaluation Results
Locking Policy

How does DFP perform compared to IPCP?

I It presents a logarithmic converging progression as the computation
time of the protected procedure increases

I DFP incurs more cumulative overhead than IPCP
I Due to the need to read the clock in checking absolute deadlines

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



14/16

Future Work
Multilayered Scheduling

How can we take benefit of the best of both?
I EDF generates a feasible schedule (if any exists) within 100% CPU
utilization

I FPS has more resilience beyond 100% CPU utilization

The Solution
A co-existence of both algorithms
should yield the best of both worlds:
EDF "becomes" FPS above 100%
load
I A double linkedlist could offer a
quick switch mechanism

I It should be based on a threshold
value computed dynamically by
the runtime on the idle time

P = Priority;
D = Rel_Deadline;
EDF_NEXT;
EDF_PREV;
FPS_NEXT;
FPS_PREV;

MultiScheduled Task

Multi_Insert ();
Multi_Extract ();

P = Priority;
NEXT;

FPS Task

Insert ();
Extract ();

D = Rel_Deadline;
NEXT;

EDF Task

Insert ();
Extract ();

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



A bareboard runtime lib for 
time-predictable parallelism

Davide Compagnin (PhD candidate), 
Tullio Vardanega
University of Padova

IWES 2017 – D. Compagnin, T. Vardanega 1 /17



Moral

 When you seek sustainable time-composable
parallelism, mind what you abstract away of 
the (manycore) processor hardware

 Implementation experience suggests that you 
should hide much less than used to be with 
concurrency

IWES 2017 – D. Compagnin, T. Vardanega 2 /17



Kalray MPPA-256

 288-core single chip
 16 17-core compute clusters 
 4 I/O subsystems (2D torus)

 Each cluster includes 17 cores
 16 for general-purpose computing
 1 for communication and core scheduling ops

 2MB RAM per cluster, in 16 128KB-memory 
banks, grouped pairwise for 8 core pairs
 Divided in left-side and right-side bank
 Memory address mapping interleaved or blocked

IWES 2017 – D. Compagnin, T. Vardanega 3 /17



NodeOS

 Kalray’s lightweight POSIX-API runtime for 
thread-level parallelism in compute clusters
 Asymmetric: the resource manager core 

processes all (synchronous, blocking) kernel calls 
(proxied from the compute cores, and FIFO 
queued) and services the NoC interfaces

 One thread per core, one process per cluster
 Neither process- nor thread-level scheduling (no 

preemption and migration) are supposed to occur

IWES 2017 – D. Compagnin, T. Vardanega 4 /17



Pthreads unfit for parallelism /1

 The POSIX primitives perform multiple data 
cache invalidations and write-buffer purging ops 
to assure cache coherency across cores

 Too memory-heavy for embedded parallelism 
(mostly owing to the execution stack)
 The context switch overhead off preemptive 

scheduling annuls the parallel speed-up
 Pthreads can only be static placeholders pinned 

to cores, serving tasks, i.e. parallel opportunities

IWES 2017 – D. Compagnin, T. Vardanega 5 /17



Pthreads unfit for parallelism /2

IWES 2017 – D. Compagnin, T. Vardanega 6 /17



Our runtime library /1

 An execution model that supports lightweight 
tasks to allow exposing the potential 
parallelism of applications efficiently

 An application-level runtime environment that 
implements dynamic, load-balanced 
task scheduling 
on top of threads

 Applications seen
as DAGs

IWES 2017 – D. Compagnin, T. Vardanega 7 /17



Runtime architecture

IWES 2017 – D. Compagnin, T. Vardanega 8 /17



Our runtime library /2

 DAGs model parallel computation
 Edges denote sequential strands of computation
 Nodes denote fork and join operations

 Suspension is costly and should be avoided
 Invert control-flow dependencies and convert the 

program to a continuation-passing style
 The computation always makes progress 

performing a tail-recursive function call
 No return to the caller, but to a “continuation” that 

represents the remainder of the computation

IWES 2017 – D. Compagnin, T. Vardanega 9 /17



Continuations /1

 The completion of T2 and T3 triggers the 
execution of T4 (their continuation)

 The continuation task T4 is seen as part of T1
 And it inherits T1’s possible ancestor
 Children tasks return to their parent effectively by 

sending return values to the continuation

IWES 2017 – D. Compagnin, T. Vardanega 10 /17



Continuations /2

 Tasks never suspend
 Their execution is deferred before starting

 This does away with the nesting of stack 
frames, and makes the execution of tasks 
completely asynchronous

 This model needs a task pool that stores the 
tasks that need execution, which neatly 
allows for load balancing

IWES 2017 – D. Compagnin, T. Vardanega 11 /17



Execution model /1

 Tasks run to completion
 Hence, there are no blocking, yielding, 

suspension, or other interfering events
 Much benefit on temporal and spatial locality

 The runtime is stack-less
 All tasks that execute within the context of the 

same executor may share its stack
 The runtime complexity is minimum

IWES 2017 – D. Compagnin, T. Vardanega 12 /17



Execution model /2

 The schedule loop exits when all tasks have 
been executed
 But checking whether the task pool is empty may 

not be sufficient
 Residual tasks may be still executing with an 

empty task pool and they can (still) originate a 
further subtree of tasks

 We check completion of the root of DAG
 Its completion corresponds to the termination of 

the computation

IWES 2017 – D. Compagnin, T. Vardanega 13 /17



Load balancing /1

 Work-sharing is work-conserving 
 No executor can be idle as there are ready tasks

 But it is not very efficient to implement
 The push mode feeds one executor at a time
 The pull model requires queue locking, which 

serializes scheduling decisions and becomes a 
scalability bottleneck

 It simply does not scale

IWES 2017 – D. Compagnin, T. Vardanega 14 /17



Load balancing /2

 Work-stealing uses a dequeue per executor
 Double-ended local LIFO queue
 Pushing and popping on the tail (serialized)

 When the local pool becomes empty, the 
executor steals from a victim
 Stealing removes the task at head of the victim’s 

deque (FIFO, to minimize access conflicts)
 Random victim selection propagates work well

 Lesser contention among cores, more data 
locality, better load balancing

IWES 2017 – D. Compagnin, T. Vardanega 15 /17



Load balancing /3

 Work-seeking uses cooperative distribution of 
work between busy and idle executors
 When the executor empties its local queue, it 

seeks work from busy executors
 Busy executors regularly check for work-seeking 

executors and, when they find one, they 
synchronously push a task into their queue

 The idle executor suspends on empty (local) 
queue and resumes as soon as the queue is 
no longer empty

IWES 2017 – D. Compagnin, T. Vardanega 16 /17



Which is best?

IWES 2017 – D. Compagnin, T. Vardanega 17 /17


	IWES 2017 A
	IWES 2017 A
	Presentazione
	Introduction
	The RM-to-EDF Transformation Process
	The Ada Ravenscar Profile
	Turning Priorities into Deadlines
	Implementation Challenges

	Evaluation Results
	Highest Schedulable Utilization
	Runtime Overhead
	Resilience to Overload Situations
	Locking Policy

	Future Work
	Migration to Other Technologies
	Multilayered Scheduling

	Conclusions
	Presentazione.pdf
	Introduction
	The RM-to-EDF Transformation Process
	The Ada Ravenscar Profile
	Turning Priorities into Deadlines
	Implementation Challenges

	Evaluation Results
	Highest Schedulable Utilization
	Runtime Overhead
	Resilience to Overload Situations
	Locking Policy

	Future Work
	Migration to Other Technologies
	Multilayered Scheduling

	Conclusions

	Presentazione.pdf
	Introduction
	The RM-to-EDF Transformation Process
	The Ada Ravenscar Profile
	Turning Priorities into Deadlines
	Implementation Challenges

	Evaluation Results
	Highest Schedulable Utilization
	Runtime Overhead
	Resilience to Overload Situations
	Locking Policy

	Future Work
	Migration to Other Technologies
	Multilayered Scheduling

	Conclusions

	Presentazione.pdf
	Introduction
	The RM-to-EDF Transformation Process
	The Ada Ravenscar Profile
	Turning Priorities into Deadlines
	Implementation Challenges

	Evaluation Results
	Highest Schedulable Utilization
	Runtime Overhead
	Resilience to Overload Situations
	Locking Policy

	Future Work
	Migration to Other Technologies
	Multilayered Scheduling

	Conclusions

	Presentazione.pdf
	Introduction
	The RM-to-EDF Transformation Process
	The Ada Ravenscar Profile
	Turning Priorities into Deadlines
	Implementation Challenges

	Evaluation Results
	Highest Schedulable Utilization
	Runtime Overhead
	Resilience to Overload Situations
	Locking Policy

	Future Work
	Migration to Other Technologies
	Multilayered Scheduling

	Conclusions

	Presentazione.pdf
	Introduction
	The RM-to-EDF Transformation Process
	The Ada Ravenscar Profile
	Turning Priorities into Deadlines
	Implementation Challenges

	Evaluation Results
	Highest Schedulable Utilization
	Runtime Overhead
	Resilience to Overload Situations
	Locking Policy

	Future Work
	Migration to Other Technologies
	Multilayered Scheduling

	Conclusions

	Presentazione.pdf
	Introduction
	The RM-to-EDF Transformation Process
	The Ada Ravenscar Profile
	Turning Priorities into Deadlines
	Implementation Challenges

	Evaluation Results
	Highest Schedulable Utilization
	Runtime Overhead
	Resilience to Overload Situations
	Locking Policy

	Future Work
	Migration to Other Technologies
	Multilayered Scheduling

	Conclusions

	Presentazione.pdf
	Introduction
	The RM-to-EDF Transformation Process
	The Ada Ravenscar Profile
	Turning Priorities into Deadlines
	Implementation Challenges

	Evaluation Results
	Highest Schedulable Utilization
	Runtime Overhead
	Resilience to Overload Situations
	Locking Policy

	Future Work
	Migration to Other Technologies
	Multilayered Scheduling

	Conclusions


	IWES 2017 A.pdf
	Presentazione
	Introduction
	The RM-to-EDF Transformation Process
	The Ada Ravenscar Profile
	Turning Priorities into Deadlines
	Implementation Challenges

	Evaluation Results
	Highest Schedulable Utilization
	Runtime Overhead
	Resilience to Overload Situations
	Locking Policy

	Future Work
	Migration to Other Technologies
	Multilayered Scheduling

	Conclusions
	Presentazione.pdf
	Introduction
	The RM-to-EDF Transformation Process
	The Ada Ravenscar Profile
	Turning Priorities into Deadlines
	Implementation Challenges

	Evaluation Results
	Highest Schedulable Utilization
	Runtime Overhead
	Resilience to Overload Situations
	Locking Policy

	Future Work
	Migration to Other Technologies
	Multilayered Scheduling

	Conclusions

	Presentazione.pdf
	Introduction
	The RM-to-EDF Transformation Process
	The Ada Ravenscar Profile
	Turning Priorities into Deadlines
	Implementation Challenges

	Evaluation Results
	Highest Schedulable Utilization
	Runtime Overhead
	Resilience to Overload Situations
	Locking Policy

	Future Work
	Migration to Other Technologies
	Multilayered Scheduling

	Conclusions

	Presentazione.pdf
	Introduction
	The RM-to-EDF Transformation Process
	The Ada Ravenscar Profile
	Turning Priorities into Deadlines
	Implementation Challenges

	Evaluation Results
	Highest Schedulable Utilization
	Runtime Overhead
	Resilience to Overload Situations
	Locking Policy

	Future Work
	Migration to Other Technologies
	Multilayered Scheduling

	Conclusions

	Presentazione.pdf
	Introduction
	The RM-to-EDF Transformation Process
	The Ada Ravenscar Profile
	Turning Priorities into Deadlines
	Implementation Challenges

	Evaluation Results
	Highest Schedulable Utilization
	Runtime Overhead
	Resilience to Overload Situations
	Locking Policy

	Future Work
	Migration to Other Technologies
	Multilayered Scheduling

	Conclusions

	Presentazione.pdf
	Introduction
	The RM-to-EDF Transformation Process
	The Ada Ravenscar Profile
	Turning Priorities into Deadlines
	Implementation Challenges

	Evaluation Results
	Highest Schedulable Utilization
	Runtime Overhead
	Resilience to Overload Situations
	Locking Policy

	Future Work
	Migration to Other Technologies
	Multilayered Scheduling

	Conclusions

	Presentazione.pdf
	Introduction
	The RM-to-EDF Transformation Process
	The Ada Ravenscar Profile
	Turning Priorities into Deadlines
	Implementation Challenges

	Evaluation Results
	Highest Schedulable Utilization
	Runtime Overhead
	Resilience to Overload Situations
	Locking Policy

	Future Work
	Migration to Other Technologies
	Multilayered Scheduling

	Conclusions

	Presentazione.pdf
	Introduction
	The RM-to-EDF Transformation Process
	The Ada Ravenscar Profile
	Turning Priorities into Deadlines
	Implementation Challenges

	Evaluation Results
	Highest Schedulable Utilization
	Runtime Overhead
	Resilience to Overload Situations
	Locking Policy

	Future Work
	Migration to Other Technologies
	Multilayered Scheduling

	Conclusions





	IWES 2017 B

