Logic synthesis techniques for switching nano-crossbar arrays

Anna Bernasconi, Valentina Ciriani, Luca Frontini, Valentino Liberali, Gabriella Trucco, Tiziano Villa

Interconnections in CMOS

Trend in Integrated Circuit industry:

- Improve throughput
- Reduce area
- Reduce power consumption

Technology scaling:

- Exploits the vertical dimension
- The number of metal layer increases
- Interconnections scaling isn't optimal

14 nm Intel - www.chipworks.com

New design approaches are needed

Emerging Technologies

Luca Frontini

September 14, 2018 3 / 15

The Switching Lattices

Switching Lattices are two-dimensional array of four-terminal switches

- When switches are ON all terminals are connected, when OFF all terminals are disconnected
- Each switch is controlled by a boolean literal, 1 or 0
- The boolean function *f* is the SOP of the literals along each path from **top** to **bottom**
- $f = x_1 x_2 x_3 + x_1 x_2 x_5 x_6 + x_4 x_5 x_2 x_3 + x_4 x_5 x_6$

• • • • • • • • • • • •

Switching Lattices

Switching Lattices:

- are two dimensional array of four-terminal switches
- emerging post-CMOS technology

A lattice output is:

- 1 if there is a connection between top and bottom
- 0 otherwise
- Gray cells are ON
- White cells are OFF
- a), b): the 4-terminal switching network and the lattice describing
 - $f = \overline{x}_1 \overline{x}_2 \overline{x}_3 + x_1 x_2 + x_2 x_3$
- c), d): the lattice with input (1,1,0) and (0,0,1)

Χ1 X2

x, X1

x3 x2

(C)

< ロ > < 同 > < 三 > < 三

ELE NOR

The synthesis methods

Altun-Riedel, 2012

- Synthesizes f and f^D from top to bottom and left to right
- It produces lattices with size growing **linearly** with the SOP
- Time **complexity is polynomial** in the number of products

		TC	OP		
-	₹ ₆	₹8	\bar{x}_6	X 4	
	₹ ₈	₹ ₈	X ₅	x ₄	
	₹ ₆	X ₇	X 6	x ₄	
	X ₇	X 7	X ₅	X ₄	RIC
Ξ	₹ ₆	X 5	X 6	X ₄	
	X_1	x ₁	X_1	x ₁	
	X 2	X 2	X ₂	X 2	
	X 3	X 3	X 3	X 3	
	BOTTOM				

Gange-Søndergaard-Stuckey, 2014

- *f* is synthesized from **top to bottom**
- The synthesis problem is formulated as a **satisfiability problem**, then the problem is solved with a SAT solver
- The synthesis method searches for better implementations starting from an upper bound size
- The synthesis loses the possibility to generate both *f* and *f*^D

TOP				
₹4	×6	x7		
x ₂	х ₅	x ₈		
\bar{x}_1	x ₂	x ₆		
Χ ₃	0	X 6		
BOTTOM				

In both examples the synthesized function is:

 $f = \overline{x}_8 \overline{x}_7 \overline{x}_6 x_3 \overline{x}_2 x_1 + \overline{x}_8 \overline{x}_7 \overline{x}_5 x_3 \overline{x}_2 x_1 + x_4 x_3 \overline{x}_2 x_1 + x_5 x_5 \overline{x}_2 x_1 + x_5 x_5 \overline{x}_2 x_1 + x_5 x_5 \overline{x}_2 x_1 + x_5 \overline{x}_2 x_2 + x_5 \overline{x}_2 x_1 + x_5 \overline{x}_2 x_2 + x_5 \overline{x}_2 x_1 + x_5 \overline{x}_2 x_2 + x_5 \overline{x}_2 + x_$

Disjunction and conjunction of lattices

f + g

- separate the paths from top to bottom for f and g
- add a column of 0s
- add padding rows of 1s if lattices have different number of rows

$f \cdot g$

- any top-bottom path of f is joined to any top-bottom path of g
- add a row of 1s
- add padding columns of 0s if lattices have different number of columns

Image: A math a math

ELE DOO

Approach to the synthesis problem

Different approaches can be used to optimize lattice synthesis. Common goals are:

- Produce optimal-size lattices
- Reduce synthesis time
- Find efficient methods for sub-optimal lattice synthesis

Use sub-optimal lattices when optimal synthesis requires too much computing time or memory

I= nac

• • • • • • • • • • • •

Preprocessing: decomposition example

$$\begin{aligned} z4(2) &= x_3\overline{x}_4\overline{x}_6\overline{x}_7 + x_1\overline{x}_3x_4\overline{x}_6 + \\ \overline{x}_1x_3\overline{x}_6\overline{x}_7 + \overline{x}_3\overline{x}_4x_6\overline{x}_7 + x_1x_3x_4x_6 + \\ x_1\overline{x}_3\overline{x}_6x_7 + \overline{x}_1x_3\overline{x}_4\overline{x}_6 + \overline{x}_3x_4\overline{x}_6x_7 + \\ \overline{x}_1\overline{x}_3\overline{x}_4x_6 + x_1x_3x_6x_7 + x_3x_4x_6x_7 \end{aligned}$$

The lattice size is 12×12

P-circuit representation: $P(z) = \overline{x}_1 S(z^{=}) + x_1 S(z^{\neq}) + S(z^{\prime})$ $S(z^{=}) = \overline{x}_3 \overline{x}_4 x_6 + x_3 \overline{x}_4 \overline{x}_6 + \overline{x}_3 x_6 \overline{x}_7 + x_3 \overline{x}_6 \overline{x}_7$ $S(z^{\neq}) = x_3 x_4 x_6 + \overline{x}_3 x_4 \overline{x}_6 + x_3 x_6 x_7 + x_3 \overline{x}_6 \overline{x}_7$

$$S(z') = x_3 x_4 x_6 x_7 + \overline{x}_3 x_4 \overline{x}_6 x_7$$

D-Reducible function

is a function that can be decomposed as:

$$f = \chi_A \cdot f_A$$

- χ_A is the characteristic function of an affine space A
- f_A is the projection of f onto A

$\overline{\chi_4}$	$\overline{\chi_2}$	$\overline{\chi_2}$	$\overline{X_2}$	$\overline{\chi_2}$	$\overline{\chi_2}$
X2	$\overline{X_5}$	$\overline{X_5}$	X 4	$\overline{X_5}$	$\overline{X_5}$
$\overline{X_3}$	$\overline{X_3}$	$\overline{X_3}$	X 4	$\overline{X_3}$	X4
X5	$\overline{\chi_2}$	$\overline{\chi_2}$	X 2	$\overline{X_2}$	$\overline{\chi_2}$
$\overline{\chi_4}$	$\overline{\chi_4}$	$\overline{\chi_4}$	Х3	$\overline{X_4}$	X3
X 1	X_1	X_1	Χ1	X1	X_1
X11	X11	X 7	X 7	X 7	X 7
Х9	X9	X 7	X 7	X7	X7
X10	X10	$\overline{X_7}$	X 7	<u>X</u> 7	$\overline{X_7}$
X8	X8	X8	X8	X8	X8

Хз	X ₃	0
X 4	$\overline{X_4}$	0
Χ1	X_1	0
X8	X8	0
1	1	1
X3	$\overline{X_5}$	<u>X</u> 3
$\overline{\chi_2}$	$\overline{X_2}$	X2
X10	1	X5
X11	<u>X</u> 7	X 3
X9	$\overline{X_7}$	<u>X</u> 7

 $f = x_1 x_2 \overline{x}_3 \overline{x}_4 x_5 x_8 x_9 x_{10} x_{11} + x_2 \overline{x}_2 \overline{x}_3 \overline{x}_4 \overline{x}_5 x_8 x_9 x_{10} x_{11} + x_1 \overline{x}_2 \overline{x}_3 \overline{x}_4 \overline{x}_5 \overline{x}_7 x_8 + x_1 \overline{x}_2 \overline{x}_3 \overline{x}_4 \overline{x}_5 \overline{x}_7 x_8 + x_1 \overline{x}_2 \overline{x}_3 \overline{x}_4 \overline{x}_5 \overline{x}_7 x_8 + x_1 \overline{x}_2 \overline{x}_3 \overline{x}_4 \overline{x}_5 \overline{x}_7 x_8$

 $f_{\mathcal{A}} = \overline{x}_2 x_3 \overline{x}_7 + \overline{x}_2 \overline{x}_5 \overline{x}_7 + x_2 \overline{x}_3 x_5 \overline{x}_6 + \overline{x}_2 x_3 x_9 x_{10} x_{11} + x_2 \overline{x}_3 x_5 x_9 x_{10} x_{11}$

$$\chi_{\mathcal{A}} = x_1 x_8 (\overline{x_3 \oplus x_4})$$

P-circuits

- smaller lattices: at least 24% of area reduction in 33% of functions
- affordable computing time, in a lot of cases find a solution in less time than the optimum one

D-reducible functions

- smaller lattices: at least 24% of area reduction in 15% of functions
- reduction of computing time by 50% to find a solution than the optimum one

Example on regularities: autosymmetric boolean functions

Autosymmetric functions

- Let V be a vector subspace of ({0,1}ⁿ, ⊕). The set A = α ⊕V, α ∈ {0,1}ⁿ, is an *affine space* over V with *translation point* α.
- $V = \alpha \oplus A$, with α any point in A.

- $f(x_1, x_2, x_3, x_4) = x_1 \oplus x_2 \oplus x_3 \oplus x_4.$
- decomposing: $f = g(y_1, y_2) = y_1 \oplus y_2$, where $y_1 = x_1 \oplus x_2$ and $y_2 = x_3 \oplus x_4$
- Multi-lattice: the sum of the areas of the lattices is smaller than the area of the optimum single-lattice

Autosymmetric functions decomposition

- smaller lattices: at least 53% of area reduction in 48% of functions
- affordable computing time: in some cases is possible to find a solution in less time than the optimum one
- Some decomposed functions have **smaller total area** w.r.t. the lattice size in optimum case.

Drawbacks:

- Routing complexity increases
- It is necessary to add some inverters

Image: A mathematical states and a mathem

Switching Lattices and Defect Tolerance

- The switching lattices are made of self assembled systems
- The probability to have a defect on a single cell is up to 10%
- We consider stuck-at-one and stuck-at-zero fault
- Different synthesis methods produce lattices with different sensitivity to faults
- Current work aims at developing a synthesis method that can improve defect tolerance

Given Logic Function

$$f = x_4 \overline{x_5} x_7 + \overline{x_4} x_6 \overline{x_7} + \overline{x_4} x_5 \overline{x_6} x_7 + x_4 \overline{x_6} \overline{x_7} + x_4 x_6 x_7$$

- Using Boolean function preprocessing we found some techniques to reduce synthesis time and area occupation of switching lattices:
 - In many cases decomposition leads to smaller lattices w.r.t. sub-optimal Altun synthesis solution
 - Preprocessing can reduce computing time generating sub-optimal lattices
 - In the case of autosymmetric functions the sum of the areas of the synthesized lattices can be smaller than the area of the optimal single-lattice solution
- · We found some preliminary techniques to reduce lattice sensitivity to faults
- In future we will work on lattice defectivity analysis and reduction of lattice sensitivity to faults

< ロ > < 同 > < 三 > < 三

Thank you!

Luca Frontini