Logic synthesis techniques for switching nano-crossbar arrays

Anna Bernasconi, Valentina Ciriani, Luca Frontini, Valentino Liberali, Gabriella Trucco, Tiziano Villa

Problem and proposed solutions

Interconnections in CMOS

Trend in Integrated Circuit industry:

- Improve throughput
- Reduce area
- Reduce power consumption

Technology scaling:

- Exploits the vertical dimension
- The number of metal layer increases
- Interconnections scaling isn't optimal

New design approaches are needed

Emerging Technologies

The Switching Lattices

Switching Lattices are two-dimensional array of four-terminal switches

- When switches are ON all terminals are connected, when OFF all terminals are disconnected
- Each switch is controlled by a

ON
 boolean literal, 1 or 0

- The boolean function f is the SOP of the literals along each path from top to bottom
- $f=x_{1} x_{2} x_{3}+x_{1} x_{2} x_{5} x_{6}+$ $+x_{4} x_{5} x_{2} x_{3}+x_{4} x_{5} x_{6}$

OFF

Switching Lattices

Switching Lattices:

- are two dimensional array of four-terminal switches
- emerging post-CMOS technology

A lattice output is:

- 1 if there is a connection between top and bottom

(a)

(c)

(b)

(d)
- c), d): the lattice with input $(1,1,0)$ and ($0,0,1$)

The synthesis methods

Altun-Riedel, 2012

- Synthesizes f and f^{D} from top to bottom and left to right
- It produces lattices with size growing linearly with the SOP
- Time complexity is polynomial in the number of products

Gange-Søndergaard-Stuckey, 2014

- f is synthesized from top to bottom
- The synthesis problem is formulated as a satisfiability problem, then the problem is solved with a SAT solver
- The synthesis method searches for better implementations starting from an upper bound size
- The synthesis loses the possibility to generate both f and f^{D}

TOP		
x_{4}	x_{6}	x_{7}
x_{2}	x_{5}	x_{8}
\bar{x}_{1}	x_{2}	x_{6}
\bar{x}_{3}	0	\bar{x}_{6}
BOTTOM		

In both examples the synthesized function is:

$$
f=\bar{x}_{8} \bar{x}_{7} \bar{x}_{6} x_{3} \bar{x}_{2} x_{1}+\bar{x}_{8} \bar{x}_{7} \bar{x}_{5} x_{3} \bar{x}_{2} x_{1}+x_{4} x_{3} \bar{x}_{2} x_{1}
$$

Disjunction and conjunction of lattices

$f+g$

- separate the paths from top to bottom for f and g
- add a column of 0s
- add padding rows of 1 s if lattices have different number of rows

$f \cdot g$

- any top-bottom path of f is joined to any top-bottom path of g
- add a row of 1 s
- add padding columns of $0 s$ if lattices have different number of columns

Approach to the synthesis problem

Different approaches can be used to optimize lattice synthesis.
Common goals are:

- Produce optimal-size lattices
- Reduce synthesis time
- Find efficient methods for sub-optimal lattice synthesis

Use sub-optimal lattices when optimal synthesis requires too much computing time or memory

Preprocessing: decomposition example

$z 4(2)=x_{3} \bar{x}_{4} \bar{x}_{6} \bar{x}_{7}+x_{1} \bar{x}_{3} x_{4} \bar{x}_{6}+$ $\bar{x}_{1} x_{3} \bar{x}_{6} \bar{x}_{7}+\bar{x}_{3} \bar{x}_{4} x_{6} \bar{x}_{7}+x_{1} x_{3} x_{4} x_{6}+$ $x_{1} \bar{x}_{3} \bar{x}_{6} x_{7}+\bar{x}_{1} x_{3} \bar{x}_{4} \bar{x}_{6}+\bar{x}_{3} x_{4} \bar{x}_{6} x_{7}+$ $\bar{x}_{1} \bar{x}_{3} \bar{x}_{4} x_{6}+x_{1} x_{3} x_{6} x_{7}+x_{3} x_{4} x_{6} x_{7}$

The lattice size is 12×12

$$
\begin{aligned}
& \text { P-circuit representation: } \\
& \begin{array}{c}
P(z)=\bar{x}_{1} S\left(z^{=}\right)+x_{1} S\left(z^{\neq}\right)+S\left(z^{\prime}\right) \\
S\left(z^{=}\right)= \\
+\bar{x}_{3} \bar{x}_{4} x_{6}+x_{3} \bar{x}_{4} \bar{x}_{6}+\bar{x}_{3} x_{6} \bar{x}_{7}+ \\
+x_{6} \bar{x}_{7}
\end{array} \\
& \begin{array}{c}
S\left(z^{\neq}\right)=x_{3} x_{4} x_{6}+\bar{x}_{3} x_{4} \bar{x}_{6}+x_{3} x_{6} x_{7}+ \\
+\bar{x}_{3} \bar{x}_{6} x_{7}+\bar{x}_{3} \bar{x}_{4} x_{6} \bar{x}_{7}+x_{3} \bar{x}_{4} \bar{x}_{6} \bar{x}_{7}
\end{array} \\
& S\left(z^{\prime}\right)=x_{3} x_{4} x_{6} x_{7}+\bar{x}_{3} x_{4} \bar{x}_{6} x_{7}
\end{aligned}
$$

$x_{3} x_{4} x_{6} x_{6} x_{7}$

$$
x_{1}=0
$$

$x_{3} x_{4} x_{6} x_{6} x_{7}$
$x_{1}=1$

$z=$

\bar{x}_{1}	\bar{x}_{1}	\bar{x}_{1}	\bar{x}_{1}	0	x_{1}	x_{1}	x_{1}	x_{1}	x_{1}	x_{1}	0	x_{4}	x_{4}
x_{6}	x_{3}	x_{6}	x_{3}	0	x_{6}	\bar{x}_{3}	x_{6}	\bar{x}_{3}	\bar{x}_{3}	\bar{x}_{4}	0	x_{7}	x_{7}
\bar{x}_{3}	\bar{x}_{6}	\bar{x}_{3}	\bar{x}_{6}	0	x_{3}	\bar{x}_{6}	x_{3}	\bar{x}_{6}	\bar{x}_{4}	\bar{x}_{4}	0	x_{6}	\bar{x}_{3}
\bar{x}_{4}	\bar{x}_{4}	\bar{x}_{7}	\bar{x}_{7}	0	x_{6}	\bar{x}_{3}	x_{6}	\bar{x}_{3}	\bar{x}_{3}	\bar{x}_{7}	0	x_{3}	\bar{x}_{6}
1	1	1	1	0	x_{3}	\bar{x}_{6}	x_{3}	\bar{x}_{6}	\bar{x}_{7}	\bar{x}_{7}	0	1	1
1	1	1	1	0	x_{3}	x_{4}	x_{3}	x_{7}	x_{6}	x_{3}	0	1	1
1	1	1	1	0	x_{4}	x_{4}	x_{7}	x_{7}	\bar{x}_{3}	\bar{x}_{6}	0	1	1

Preprocessing: D-reducible function example

D-Reducible function

is a function that can be decomposed as:

$$
f=\chi_{A} \cdot f_{A}
$$

- χ_{A} is the characteristic function of an affine space A
- f_{A} is the projection of f onto A

$\overline{X_{4}}$	$\overline{\mathrm{X}}$	$\overline{\mathrm{X}}$	$\overline{\mathrm{X}}$	$\overline{X_{2}}$	$\overline{X_{2}}$
X_{2}	$\overline{X_{5}}$	$\overline{X_{5}}$	X_{4}	$\overline{X_{5}}$	$\overline{X_{5}}$
$\overline{X_{3}}$	$\overline{X_{3}}$	$\overline{X_{3}}$	X_{4}	$\overline{X_{3}}$	X_{4}
X_{5}	$\overline{X_{2}}$	$\overline{X_{2}}$	X_{2}	$\overline{X_{2}}$	$\overline{X_{2}}$
$\overline{X_{4}}$	$\overline{X_{4}}$	$\overline{X_{4}}$	X_{3}	$\overline{X_{4}}$	X3
X_{1}	X_{1}	X_{1}	X_{1}	X_{1}	X_{1}
X_{11}	X_{11}	$\overline{X_{7}}$	$\overline{X_{7}}$	$\overline{X_{7}}$	$\overline{X_{7}}$
X_{9}	X_{9}	$\overline{X_{7}}$	$\overline{X_{7}}$	$\overline{X_{7}}$	$\overline{X_{7}}$
X_{10}	X_{10}	$\overline{X_{7}}$	$\overline{X_{7}}$	$\overline{X_{7}}$	$\overline{X_{7}}$
X8	X8	X_{8}	X8	X_{8}	X8

X 3	$\overline{X_{3}}$	0
X_{4}	$\overline{X_{4}}$	0
X_{1}	X_{1}	0
X_{8}	X_{8}	0
1	1	1
X_{3}	$\overline{X_{5}}$	$\overline{X_{3}}$
$\overline{X_{2}}$	$\overline{X_{2}}$	X_{2}
X_{10}	1	X_{5}
X_{11}	$\overline{X_{7}}$	$\overline{X_{3}}$
X9	$\overline{X_{7}}$	$\overline{X_{7}}$

$$
\begin{gathered}
f=x_{1} x_{2} \bar{x}_{3} \bar{x}_{4} x_{5} x_{8} x_{9} x_{10} x_{11}+x_{2} \bar{x}_{2} \bar{x}_{3} \bar{x}_{4} \bar{x}_{5} x_{8} x_{9} x_{10} x_{11}+x_{1} \bar{x}_{2} \bar{x}_{3} \bar{x}_{4} \bar{x}_{5} \bar{x}_{7} x_{8}+ \\
+x_{1} \bar{x}_{2} x_{3} x_{4} \bar{x}_{7} x_{8}+x_{1} \bar{x}_{2} \bar{x}_{3} \bar{x}_{4} \bar{x}_{5} \bar{x}_{7} x_{8}+x_{1} \bar{x}_{2} x_{3} x_{4} \bar{x}_{7} x_{8} \\
f_{A}=\bar{x}_{2} x_{3} \bar{x}_{7}+\bar{x}_{2} \bar{x}_{5} \bar{x}_{7}+x_{2} \bar{x}_{3} x_{5} \bar{x}_{6}+\bar{x}_{2} x_{3} x_{9} x_{10} x_{11}+x_{2} \bar{x}_{3} x_{5} x_{9} x_{10} x_{11} \\
\chi_{A}=x_{1} x_{8}\left(\overline{x_{3} \oplus x_{4}}\right)
\end{gathered}
$$

Preprocessing: results

P-circuits

- smaller lattices: at least 24% of area reduction in 33% of functions
- affordable computing time, in a lot of cases find a solution in less time than the optimum one

D-reducible functions

- smaller lattices: at least 24% of area reduction in 15% of functions
- reduction of computing time by 50% to find a solution than the optimum one

Example on regularities: autosymmetric boolean functions

Autosymmetric functions

- Let V be a vector subspace of $\left(\{0,1\}^{n}, \oplus\right)$. The set $A=\boldsymbol{\alpha} \oplus V$, $\boldsymbol{\alpha} \in\{0,1\}^{n}$, is an affine space over V with translation point $\boldsymbol{\alpha}$.
- $V=\boldsymbol{\alpha} \oplus A$, with $\boldsymbol{\alpha}$ any point in A.

x_{1}	$\overline{x_{1}}$	0	x_{1}	$\overline{x_{1}}$
$\overline{x_{2}}$	x_{2}	0	x_{2}	$\overline{x_{2}}$
1	1	0	1	1
x_{3}	$\overline{x_{3}}$	0	x_{3}	$\overline{x_{3}}$
x_{4}	$\overline{x_{4}}$	0	$\overline{x_{4}}$	x_{4}

- $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4}$.
- decomposing: $f=g\left(y_{1}, y_{2}\right)=y_{1} \oplus y_{2}$, where $y_{1}=x_{1} \oplus x_{2}$ and $y_{2}=x_{3} \oplus x_{4}$
- Multi-lattice: the sum of the areas of the lattices is smaller than the area of the optimum single-lattice

Autosymmetric functions decomposition results

Autosymmetric functions decomposition

- smaller lattices: at least 53% of area reduction in 48% of functions
- affordable computing time: in some cases is possible to find a solution in less time than the optimum one
- Some decomposed functions have smaller total area w.r.t. the lattice size in optimum case.

Drawbacks:

- Routing complexity increases
- It is necessary to add some inverters

Switching Lattices and Defect Tolerance

Given Logic Function

- The switching lattices are made of self assembled systems
- The probability to have a defect on a single cell is up to 10%
- We consider stuck-at-one and stuck-at-zero fault
- Different synthesis methods produce lattices with different sensitivity to faults
- Current work aims at developing a synthesis method that can improve defect tolerance

$$
f=x_{4} \overline{x_{5}} x_{7}+\overline{x_{4}} x_{6} \overline{x_{7}}+\overline{x_{4}} x_{5} \overline{x_{6}} x_{7}+x_{4} \overline{x_{6}} \overline{x_{7}}+x_{4} x_{6} x_{7}
$$

x_{4}	$\overline{x_{7}}$	x_{5}	$x_{4}, \overline{x_{7}}$	x_{4}
$\overline{x_{5}}$	$x_{6}, \overline{x_{4}}$,$\overline{\bar{x}_{7}}$	$\overline{x_{7}}$	x_{6}	
x_{7}	$\overline{x_{4}}$	$x_{7}, \overline{x_{4}}$ $\overline{x_{6}}$	$\overline{x_{6}}$	x_{7}
x_{4}	$\overline{x_{7}}$	$\overline{x_{6}}$	$x_{4}, \overline{x_{6}}$ $\overline{x_{7}}$	x_{4}
x_{4}, x_{7}	x_{6}	x_{7}	x_{4}	x_{4}, x_{6} x_{7}

a)

x_{4}	$\overline{x_{7}}$	x_{5}	x_{4}	x_{4}
$\overline{x_{5}}$	$\overline{x_{7}}$	$\overline{x_{4}}$	$\overline{x_{7}}$	x_{6}
x_{7}	$\overline{x_{4}}$	x_{7}	$\overline{x_{6}}$	x_{7}
x_{4}	$\overline{x_{7}}$	$\overline{x_{6}}$	$\overline{x_{7}}$	x_{4}
x_{4}	x_{6}	x_{7}	x_{4}	x_{7}

b)

$\overline{x_{7}}$	x_{4}	$\overline{x_{7}}$	x_{5}	x_{4}	x_{4}
$\overline{x_{7}}$	$\overline{x_{5}}$	$\overline{x_{7}}$	$\overline{x_{4}}$	$\overline{x_{7}}$	x_{6}
$\overline{x_{4}}$	x_{7}	$\overline{x_{4}}$	x_{7}	$\overline{x_{6}}$	x_{7}
$\overline{x_{7}}$	x_{4}	$\overline{x_{7}}$	$\overline{x_{6}}$	x_{4}	x_{4}
x_{6}	x_{4}	x_{6}	x_{7}	x_{4}	x_{7}

c)

Conclusions

- Using Boolean function preprocessing we found some techniques to reduce synthesis time and area occupation of switching lattices:
- In many cases decomposition leads to smaller lattices w.r.t. sub-optimal Altun synthesis solution
- Preprocessing can reduce computing time generating sub-optimal lattices
- In the case of autosymmetric functions the sum of the areas of the synthesized lattices can be smaller than the area of the optimal single-lattice solution
- We found some preliminary techniques to reduce lattice sensitivity to faults
- In future we will work on lattice defectivity analysis and reduction of lattice sensitivity to faults

Thank you!

