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This Talk

Motivations

A case study
Understanding the workload generated by 

a Deep Neural Network

Our work
Timing isolation for DNN and real-time tasks 

executed on a multiprocessor platform
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DNNs are everywhere

Advanced Robotics

Surveillance

Healthcare

Autonomous Driving
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• The ILSVRC Challenge is a competition held from
2010 in which networks compete in classifying
objects from images to labels, with 1000 possible
categories
Training set: 1.2 million images (1,000 categories)

Test set: 150,000 images

Image Recognition
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The winning network of 2017 (SENet), achieved
an accuracy of 97.74%

Source: http://blog.paralleldots.com/data-science/must-read-path-breaking-papers-about-image-classification/

Are DNNs good enough?
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Motivation
How to achieve predictability in 
the execution of DNN workload?
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• What is a suitable model for the workload generated by
complex DNNs?

• What is the resource consumption?
• Case study

• InceptionV3: powerful image recognition DNN
• Tensorflow: open-source machine learning framework by Google

Understanding Complex DNN Workload

• Stock Tensorflow with eigen
math library on CPUs

• Strongly parallel workload
with two levels of parallelism
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Understanding Complex DNN Workload
• A DNN is composed of a pipeline of layers, where

each one implements an operation
• Key issue when it is used in a critical system:

guaranteeing that a real-time workload composed of
DNNs completes within a deadline (inference phase
only)

Layer Layer Layer

IM
A

G
E Data Data Data

…
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InceptionV3 on Tensorflow

357

It further includes a 
parallel structure

• First level is represented by a complex graph (~700 nodes)
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InceptionV3 on Tensorflow

357

• Nodes typically correspond to mathematical
computations (e.g., tensor convolutions) whose
implementation is platform-dependent and extremely
parallel – this is the second level of parallelism

• InceptionV3 on a 8-core Intel i7 machine @ 3.5GHz

• More than 34000 nodes (!) where only about 1.2% of them have execution
times larger than 100 microseconds

• Complex workload with extreme parallelism  difficult to understand and
manage



11Daniel Casini

InceptionV3 on Tensorflow
• Nodes of the parallel tasks exchange a lot of data

Input image (60Kb)

24 56
24562

amount of data exchanged
(bytes)

Total of data exchanged by nodes at the first 
level of parallelism amounts to 603856960 bytes 

~= 604 Megabytes 

InceptionV3
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How Tensorflow works on CPUs?

C

TensorFlow Runtime Environment

• TensorFlow assigns ready nodes to threads of a thread pool, one
for each level

CPU 0

Core 0 Core 1 Core 2 Core 3

TensorFlow Dispatcher

OS Scheduler

Thread Pool

Thread 0 Thread 1 Thread 2 Thread 3

.

.

.

RunQueue
.
.
.

.

.

.

.

.

.

Work Stealing

Nodes

Best effort, conceived to maximize average-case 
performance and not to be predictable!
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Predictable DNN Engines
• Deep Neural Network (DNN) engines are typically conceived

for best effort applications
• No support for execution predictability
• Prone to attacks and malfunctioning

• Need for improved inference engines to support predictable
computing
• Real-time scheduling and memory management, predictable

allocation
• Isolation to contain & control memory contention

Execution & Mapping

DNN
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• TensorFlow is a complex software written in C++
• Large usage of dynamic memory
• Large usage of complex and advanced features of C++
• No safety programming guidelines are followed
• Wide usage of pointers
• …

TensorFlow for Safety-Critical Systems?

Far from safety-critical software standards (e.g.,
ISO26262):

• Static memory
• Mandatory programming guidelines
• Limited use of pointers
• …

Large effort is required to make it usable in a 
safety-critical environment
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Motivation

Ongoing work
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Scenario
Workload composed of DNN and 

regular real-time tasks

Multicore Platform

Deep Neural Networks

Real Time tasks

Core 0 Core 1 Core 2 Core 3

Operating System
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Scenario
but unfortunately they can interfere each other…

Multicore Platform

Core 0 Core 1 Core 2 Core 3

Operating System

DNN

DNN

RT TASK

RT TASK

RT TASK
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Resource Reservation

10 %

45 % 25 %

20 %
1

23

4

Resource partition

Each task subset is assigned a
fraction i of CPU bandwidth and
behaves as it were executing
alone on a slower processor of
speed i

Resource enforcement

 A mechanism that prevents
a task to consume more
than its reserved amount.

 If a task executes more, it
is delayed, preserving the
resource for other tasks.

Available in the SCHED_DEADLINE
scheduling class of Linux
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Problem

 

 

 

  

• The usage of resource reservation when the workload is subject
to precedence constraints can cause performance degradation

ℎ2  

 
 ℎ

1

 

ℎ1   

budget exhaustion
 

 waiting

Budget exhaustion prevents 
successor nodes from being spawned
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Our work
• Reduce the performance hit due to the usage of

resource reservation by allowing budget overrun

• Exploit data locality of DNN workload by
implementing localized stealing

Nodes are typically very small, allow them overrunning 
(with payback) can improve performance

Nodes exchange a considerable amount of memory:
Steal work from neighboring cores to take 

advantage of shared levels of cache
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Some results
8-core Intel i7 running at 3.50Ghz, Tensorflow v1.5

2 DNNs + real-time tasks
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Some results

InceptionV3

baseline
localized stealing
overrun

(ms)

8-core Intel i7 running at 3.50Ghz, Tensorflow v1.5

2 DNNs + real-time tasks
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