

A Dual-Hypervisor for supporting multiple Trusted Execution Environments on Arm TrustZone

Giorgiomaria Cicero

Alessandro Biondi Giorgio Buttazzo

ReTiS Lab – Tecip Institute Scuola Superiore Sant'Anna

AGENDA

1 Isolation for multiple domains with Trusted Execution Environments (TEEs)

The need for reconciling virtualization with hardware-based security capabilities

2 A Dual-Hypervisor design for ARM TrustZone

Achieving virtualization of both secure and non-secure worlds with jointly-configured hypervisors with a limited overhead, small memory footprint and high predictability

3 A Safe, Secure and Hard Real-time software stack

A solution for next-generation autonomous systems

Integrating multiple software components

Multi-OS solution through virtualization

Proposed HW solution – ARM TrustZone

TrustZone provides support for a hardware-based TEE by splitting computer resources between two execution worlds

ARM TrustZone for ARMv7-A/R processor

Classical processor modes split into normal and secure plus a super privileged monitor mode

The Dual-Hypervisor Design

The Future Dual-Hypervisor Design

Secure world is highly predictable

Isolation boundaries of the Dual-Hypervisor design

Potential application in the automotive field

Towards reducing #ECUs, integrating multiple ECU functionalities (i.e. software) within the same platform can be very challenging

Potential application in the automotive field (2)

Combining infotainment system with Autosar systems

---Hardware-based boundary (e.g. Arm TrustZone)

----Software-based boundary (based on hardware-assisted virtualization)

Test case

Benefits

- A Dual-hypervisor design can support multiple TEEs
- Leveraging hardware-based isolation achieving robustness
- No single point of failure
- Limited overhead for NS Guests w.r.t. single-hypervisor designs
- More robustness with regard to hyperjacking
- High predictability on executing trusted code

Current and future works

Working towards a Spin-Off!!

Hypervisor: main features

Address-Space Randomization Control Flow Integrity (Armv-8.3 HW support) Stack overflow protection Secure boot for Virtual Machines Several side-channel attacks mitigations Dual-Hypervisor for strong MILS (see next slide)

Cache-coloring Memory bandwidth Bank-aware memory allocation O(1) algorithm complexities (almost all) Fixed-priority (RM/DM) and EDF scheduling Resource reservation Very low boot latency

Totally staticOff-line auto-generated configurationMISRA-C 2012 compliantCode prone for SIL3/4 certificationSafety guards for unpredictable SWLow memory-footprint

Current status

Xilinx Zynq Ultrascale+ (ZCU102 board)

CPU	Quad-core ARM Cortex-A53 Dual-core ARM Cortex-R5
GPU	ARM Mali-400 MP2
FPGA	Zynq Ultrascale FPGA XCZU9EG (600K logic cells, 32Mb mem, 2520 DSPs
Memory	PS 4GB DDR4 64-bit SODIMM w/ ECC PL 512MB DDR4 at 1200MHz / 2400Mbps DDR

Targets

• ADAS

- Railway
- Industry 4.0

NVIDIA Jetson TX2

GPGPU	NVIDIA Pascal™, 256 NVIDIA CUDA® cores
CPU	HMP Dual Denver 2/2MB L2 + Quad ARM [®] A57/2MB L2
Memorv	8 GB 128-bit LPDDR4 58.3 GB/s

Targets

- ADAS
- Autonomous driving
- Industry 4.0
- Robotics

THANKS FOR YOUR ATTENTION

Giorgiomaria Cicero

Research Fellow at Retis Lab Scuola Superiore Sant'Anna Pisa, Italy

g.cicero@sssup.it