

Politecnico di Bari Laboratories involved in Embedded Systems Design

Daniela De Venuto, Giovanni Mezzina, Michele Ruta, Eugenio Di Sciascio Dept. of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy

Laboratories Presentation

Led by Daniela De Venuto

- People:
 - ✓ Giovanni Mezzina (research assistant)
 - ✓ Lucrezia Rutigliano (research assistant)
 - ✓ Valerio F. Annese (PhD student @Glasgow University UK)
 - ✓ Vincenzo Scarola (Technician)
 - √ 3 Master thesis students

Most Recent Research Projects:

- ✓ AMICO: PON ARS01_00900 2018-2020 (Assistenza Medicale In COntextual awareness)
- ✓ **DIABESITY:** Regional Cluster 2016-2018 Diabetes Integrated Monitoring System for self-care empowering promoted
- PERSON: FSC 2007-2013 Regional Cluster PERvasive game for perSOnalized treatment of cognitive
 and functional deficits associated with chronic and
 Neurodegenerative diseases
- ✓ INNOVAALAB Regional Living Laboratory now promoted to ENOLL: European Network of Living Labs
- CESAR RIDITT: PON R&C 2007 -2013 MISE D.M. 22 July 2009 – "Food safety and certification using RFID technology"
- ✓ RES NOVAE: PON R&C 2007 -2013 "SUPPORTING INNOVATION" - operational objective: "integrated actions for sustainable development and for information society development"

International Events:

Led by Eugenio Di Sciascio

Collaborations:

Laboratories Presentation

Led by **Daniela De Venuto**

Collaborations:

Most Recent Research Projects:

- ✓ ARGES: "pAssengeRs and loGistics information Exchange System" E.T.C.P Greece Italy 2007-2013
- ✓ **ASMARA** "Applicazioni pilota post Direttiva 2010/65 in realtà portuali italiane della Suite MIELE a supporto delle Authority per ottimizzazione della inteRoperabili-tà nell'intermodalitA' dei flussi città-porto ASMARA PON
- ✓ PERSON: FSC 2007-2013 Regional Cluster PERvasive game for perSOnalized treatment of cognitive and functional deficits associated with chronic and Neurodegenerative diseases
- ✓ **Ubicare:** "UBIquitous knowledge-oriented healthCARE" POR FESR 2007-2013
- ▼ ERHA: RADIOTERAPIA AVANZATA CON ADRONI/ ENHANCED RADIOTERAPHY WITH HADRONS " 2014-2020 FESR Bando "HORIZON 2020"
- ✓ RES NOVAE Reti, Edifici, Strade: Nuovi Obiettivi Virtuosi per l'Ambiente e l'Energia : PON R&C 2007 -2013
- ✓ Puglia@Service Internet-based Service Engineering enabling Smart Territory structural development. PON-REC 2007-2013

Led by Eugenio Di Sciascio

- People:
- ✓ Michele Ruta (Associate Professor)
- ✓ Floriano Scioscia (Post doc)
 - ✓ Agnese Pinto
 (Post Doc)
- ✓ Giuseppe Loseto (Post Doc)
- ✓ Giovanna Capurso (PhD Student)
- ✓ Filippo Gramegna (PhD Student)
 - ✓ Saverio Ieva
 - (research assistant
 - ✓ Ivano Bilenchi (research assistant)
- √ Serena De Siati (Technician)

Laboratories Presentation

Current Main Research Topics

Led by Eugenio Di Sciascio

Led by Daniela De Venuto

Brain Computer Interfaces Artificial Intelligence

Simulink-Matlab Signal Processing Knowledge Representation

Time-frequency Analysis Knowledge discovery

Remote Brain-driven Mechatonic Devices Skill and competence management

Improved Classification Algorithms Semantic Web and technologies

FPGA based sensor interfaces for Biomedicine Distributed Information Systems

Wearable Devices Big Data

EEG/EMG-FPGA Interface Linked Open Data

Fall-prevention System Model Checking

Diabetes Monitoring E-Commerce and Automated Negotiation

Parkinson's Disease Stage Recognition Decision Support Systems

Neuro-cognitive Assessment Service Oriented Architectures

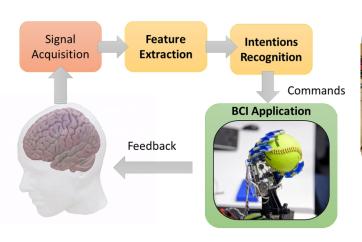
Electronic Systems and Applications Pervasive Computing and Ubiquitous Web

Integrated Circuit Design Domotics and Smart Cities

Design tool for Class-E Amplifier Data/Text mining for Information Retrieval

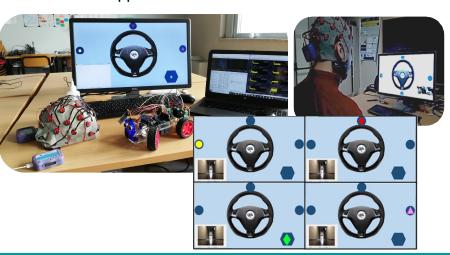
Pro-active WSNs for food safety and certification
Internet of things

Power System for Wireless Neural Recording Vehicular Networks


Biodegradable Endoradiosonde Mobile Apps

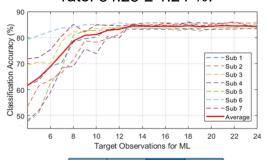
IWES 2018 September 13-14, 2018 Siena, Italy

Activity: P300-based Brain Computer Interface for Mechatronic Device Driving Collaboration with: University of Glasgow (UK)


The Brain Computer Interface

A "Brain-Computer Interface" (BCI) is a direct communication channel between human brain and external devices by using a computer. The BCI is based on the recognition of a particular Brain Activity Pattern (BAP). In our case, the BAP is the event related potential (ERP): P300.

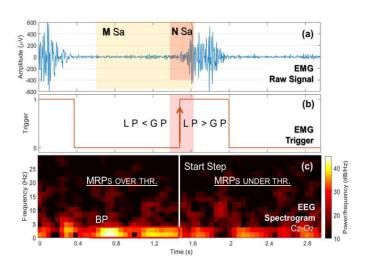
The Proposed BCI Architecture


EEG data are acquired by 6 smart wireless electrodes from the parietal-cortex area. The processing unit is hosted on a μPC performing stimuli delivery, data gathering, Machine Learning (ML) and real-time classification leading to the user intention recognition. The ML stage is based on a custom algorithm (t-RIDE) which trains the classifier on the user-tuned P300 reference features. The Raspberry-based navigation unit actuates the received commands and supports the mechatronic devices.

Key Results

The P300-based BCI has been tested on a prototype car based on Rapberry Pi. The ML stage uses an innovative algorithm, which guarantees implementation of a subjectivity-based feature selection, allowing a classification rate: 84.28 ± 1.24 %.

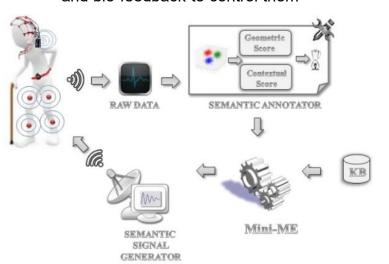
Sub1	83.42	83.68	89.8	84.9
Sub2	87.82	85.05	88.01	85.32
Subject 8 SqnS	86.78	80.78	85.78	83.69
S Sub4	84.75	84.81	84.82	81.59
ည် Sub5	85.39	80.63	83.46	80.87
Accuracy 99nS	85.44	84.5	85	85.06
Sub7	84.34	85.03	74.37	84.68
	T1	T2	Т3	T4

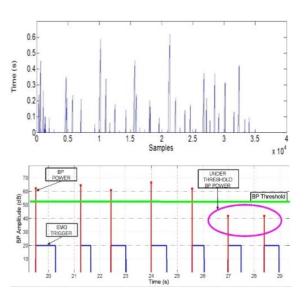

Activity: A Cyber-Physical System for Fall Prevention by Cortico-muscular Coupling Detection

Collaboration with: University of California at Berkeley (US), University of Bari (Neuroscience Dept.)

Key Results

Motivations: EEG and EMG

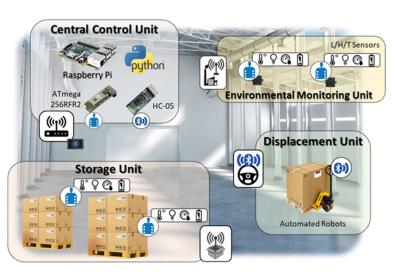

Voluntary movements are preceded Movement Related Potentials (MRP) in the motor area of the brain, i.e. Bereitschaftspotential-BP-(2-5 Hz), μ -rhythm (7.5-12.5 Hz) and β -rhythm (13-30 Hz).


The Cyber-Physical System

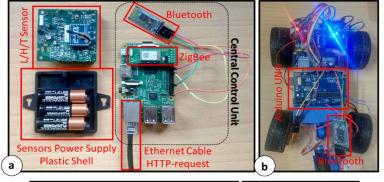
Real time acquisitions and elaborations of synchronized EEG/EMG data for involuntary and dangerous movements detections.

Applications: Medical diagnostic in neurodegenerative diseases and health-care systems for home assistance. Falls preventions by detection of involuntary movements and bio-feedback to control them

When a EMG contraction a timefrequency analysis on EEG signal is performed. The goal is the detection of MRPs: if MRPs are detected, the movement is considered intentional. Otherwise a critical situation is detected

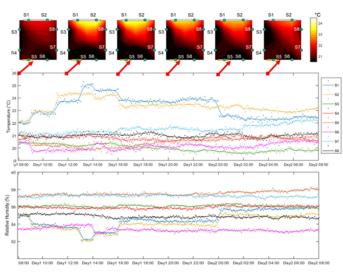


Activity: Spatio-Temporal Optimization of Perishable Goods' Shelf Life by a Pro-Active WSN-Based Architecture


Wireless Sensor Network

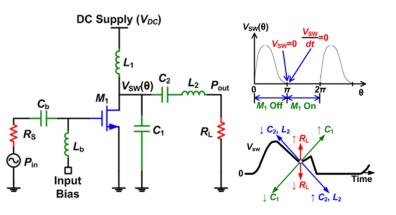
A complete infrastructure for the monitoring of perishable goods supply chain, based on the combination of the wireless sensor network technology and a further data processing for shelf life prediction, has been developed.

Adaptive Shelf Life Prediction

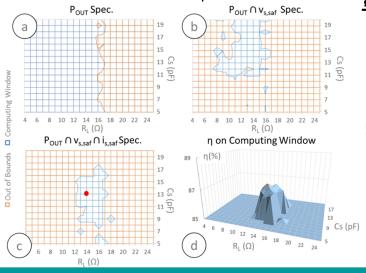

Architecture components: (a) L/H/T sensor and Raspberry Pi 2 Model B+ equipped with ZigBee and Bluetooth modules (b) prototype car driven by Arduino UNO core and Bluetooth. (c-d) Snapshots of Central Control Units

Key Results

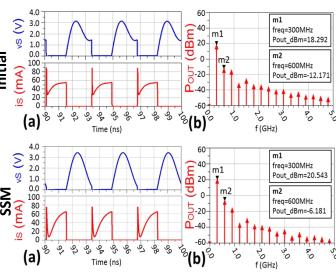
The shelf-life prediction is based on an algorithm exploiting a first-order kinetic model in which the degradation rate follows the Arrhenius Law. The system has been tested on 4 pallets.



Activity: State Space Model-Oriented Design for Efficiency Improvement of Class E PA Collaboration with: University of California at Berkeley (US)


The Class E PA

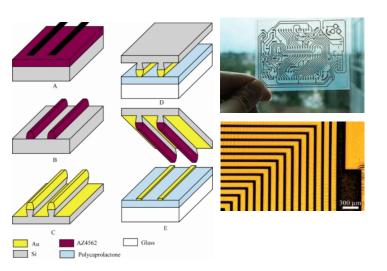
A basic schematic for the Class E PA is shown in figure. The circuit consists of a MOS device (M1), which works as a switch at the frequency f0. The C1 shunt capacitor includes the output capacitance of the switch. L1 is the choke, while L2 and C2 are the band-pass filter, RL The suitable choice of the circuit components imposes that: (i) Zero slope Voltage Switching, ZsVS and (ii) Zero Voltage Switching, ZVS.


The 3D Specifications Check

The tool provides an automatic optimization of the Class E components, just by inserting the design specifications and the starting values. The second step of the automatic iterative tuning allows preserving the highest value of power efficiency. All specifications realize a three-dimensional matrix, which allows converging to an optimal solution by using the crosscheck of the specifications.

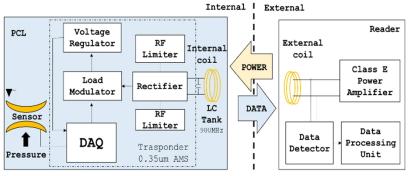
Key Results

As case study, an η-optimal design has been implemented by using the proposed tool. We compare the analytical design of the Class E PA implemented in TSMC 65nm CMOS technology, with the State Space Model.


(a) **Simulated** Time domain waveforms: on the left, at the top the switch voltage, v_s , below, the current, i_s . (b) On the right the FFT of the P_{OUT} .

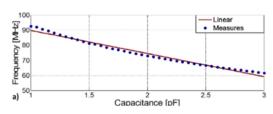
IWES 2018 September 13-14, 2018 Siena, Italy

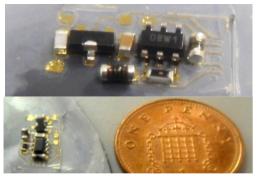
Activity: Swallowable Biodegradable Endoradiosonde Printed in Gold on PCL Collaboration with: University of Glasgow (UK)



The printing technique allows to deposit very thin film of gold (30 um) on a flexible, biodegradable and biocompatible substrate called Polycaprolactone (PCL)

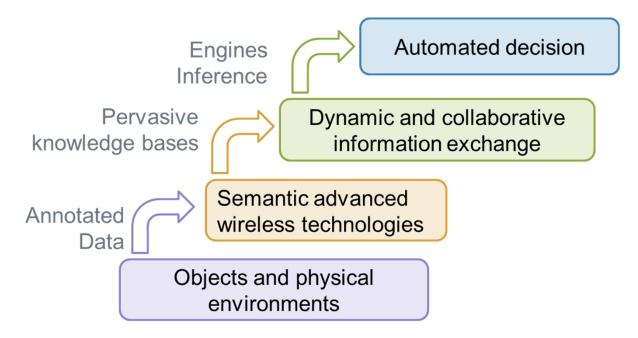
Endoradiosonde Architecture


The ERS (pressure sensor to be swallowed or implanted) is made up by the pressure sensor, the transponder (data acquisition unit - DAQ - and RF front end) and a LC tank tuned at 900MHz. The transponder has been designed in 0.35um AMS technology. The pressure sensitive device is a tunable capacitor which performs a linear variation depending on the pressure with a sensitivity (ΔC/ΔP) of 0.4 pF/KPa



Key Results

The ERS can measure the sensor output frequency with an INL error of 0.4%, a sensitivity $\Delta f/\Delta P = -6.12 MHz/kPa$, occupies a volume of 1mm3 and consumes, respectively, 400uW and 360uW for dynamic and static power.



SisInf Lab: Research Interests

Activity: Semantic Web of Things

Knowledge representation technologies for the evolution of the capabilities of pervasive systems

Key Results →u-KB

A ubiquitous Knowledge Base (u-KB) is a distributed and decentralized knowledge base where the factual knowledge (i.e. individuals) is scattered among objects disseminated within a given environment with no centralized coordination

SisInf Lab: Research Interests

Activity: From IoT to SWoT- Technologies

A. Integration of knowledge representation into standard wireless communication protocols

- Bluetooth
- Identificazione a radiofrequenza (RFID)
- ZigBee
- Wi-Fi (IEEE 802.11)
- EIB/KNX (Konnex)
- CoAP
- OBD-II (On-Board Diagnostics)
- Physical Web

B. Automated inference engines highly optimized for systems with low computing resources

- Mobile systems : Android, iOS
- Embedded systems: Raspberry Pi, Intel Edison, Arduino, UDOO

Key Results → Mini-ME - the Mini Matchmaking Engine - http://sisinflab.poliba.it/swottools/minime/

SWoT Research Experience

W W	Supply Chain DSS	Resource optimization directly in the production phase
	Home and Building Automation	MAS for automated negotiation of home energy resources and services
G.	Healthcare DSS	Indentify user diseases and suggest most suitable therapies; verify drug interactions
	Car and Driving assistance	Real-time car diagnostics to suggest driver actions and behaviors and minimize risks
	Augmented Reality and Indoor Navigation	AR discovery tool matching the user profile with resources extracted from OSM
	Cyber-Physical Systems	Knowledge-based robotic systems for search and rescue scenarios
	Physical Semantic Web	Enhancement of Google Physical Web project to embed annotations into beacons

Key Results → Google Internet of Things (IoT) Technology Research Award, Best Paper awards, finalist at the konnex competition