

User-Centred BCI for Mechatronic Actuation by Spatio-Temporal P300 Monitoring

Daniela De Venuto^{*1}, Giovanni Mezzina¹, Valerio F. Annese²

¹ Dept. of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy

² School of Engineering, University of Glasgow, Glasgow, United Kingdom

*(<u>daniela.devenuto@poliba.it</u>)

Outline

□ Introduction: the "Brain Computer Interface"

□ Methods: the Overall Architecture and Algorithm

- Machine Learning
- Features Management
- Classification
- **Experimental Results**

Conclusions

General BCI Control System

A "Brain-Computer Interface" (BCI) is the **control loop platform** between the **human brain** and **mechanical devices**.

Goal: To create enabling technology, even for disabled people, controlling devices by their mind

Introduction
 Methods
 Results
 Conclusions

The BCI is based on the **recognition** of a particular **Brain Activity Pattern (BAP)**, that is excited during a particular mental task. Some of the most used (state of the art):

Event related potentials (ERP)

- □ Slow cortical potentials (SCP)
- Event-related synchronization potentials (ERD/ERS)
- Steady state visual potentials (SSVP)
- Sensorimotor rhythms (SMR)

Cursors and Speller

Hochberg et al.(2006)

Car Driving

Duan Feng et al. (2015)

The BCI is based on the **recognition** of a particular **Brain Activity Pattern (BAP)**, that is excited during a particular mental task. Some of the most used (state of the art):

Event related potentials (ERP)
 Slow cortical potentials (SCP)

- Event-related synchronization potentials (ERD/ERS)
- Steady state visual potentials (SSVP)
- Sensorimotor rhythms (SMR)

Hochberg et al.(2006)

Car Driving

Duan Feng et al. (2015)

Wheelchairs

□ Introduction

Conclusions

□ Methods

Results

Tanaka et al. (2015)

The BCI is based on the **recognition** of a particular **Brain Activity Pattern (BAP)**, that is excited during a particular mental task. Some of the most used (state of the art):

□ Event related potentials (ERP)

- Slow cortical potentials (SCP)
- Event-related synchronization potentials (ERD/ERS)
- Steady state visual potentials (SSVP)
- Sensorimotor rhythms (SMR)

Cursors and Speller

Hochberg et al.(2006)

Car Driving

Duan Feng et al. (2015)

<u>Prothesis</u>

Ortner et al. (2011)

□ Introduction

Conclusions

□ Methods

Results

Tanaka et al. (2015)

The BCI is based on the **recognition** of a particular **Brain Activity Pattern (BAP)**, that is excited during a particular mental task. Some of the most used (state of the art):

Event related potentials (ERP)

- □ Slow cortical potentials (SCP)
- Event-related synchronization potentials (ERD/ERS)
- Steady state visual potentials (SSVP)
- Sensorimotor rhythms (SMR)

Cursors and Speller

Hochberg et al.(2006)

Car Driving

Duan Feng et al. (2015)

<u>Prothesis</u>

Ortner et al. (2011)

Wheelchairs

□ Introduction

Conclusions

□ Methods

□ Results

Tanaka et al. (2015)

Neuro-games

«Neuro-Pong» (2010)

The BCI is based on the **recognition** of a particular **Brain Activity Pattern (BAP)**, that is excited during a particular mental task. Some of the most used (state of the art):

Event related potentials (ERP)

- □ Slow cortical potentials (SCP)
- Event-related synchronization potentials (ERD/ERS)
- Steady state visual potentials (SSVP)
- **Gensorimotor rhythms (SMR)**

Hochberg et al.(2006)

Car Driving

Duan Feng et al. (2015)

Ortner et al. (2011)

Robotics Control

Bogue et al. (2014)

Wheelchairs

□ Introduction

Conclusions

□ Methods

□ Results

Tanaka et al. (2015)

Neuro-games

[«]Neuro-Pong» (2010)

September 13-14, 2018

State of the Art

Introduction
Methods
Results
Conclusions

Signal	Physiological Phenomena (Occurrence Time)	Number of choices	Training Time	Transfer rate	Mean ¹ Accuracy		
		(Opt: ≥4)	(Opt: ≤1h)	(Opt: ≥30 bits/min)	(Opt: >80%)		
SSVP (or VEP)	Neural activity elicited by a visual stimulus (~10-70ms - AS)	<12	Hours 😐	60-100 bits/min	80% 😕		
SCP	Slow Cortical Potentials are shifts in the cortical electrical activity (200ms BS to 300 ms AS)	2 -4	Weeks	5-12 bits/min	86% 🙂		
P300	Positive peaks due to the occurrence of single or rare stimulus (~150-450ms AS)	<9 🙂	Hours 😐	20-25 bits/min	84% 😐		
SMR	Modulations in sensorimotor rhythms (up to 8s AS)	2-5	Weeks 🦰	3-20 bits/min	85% 🙂		
¹ Mean accuracy evaluated on work that operates on single trial classification; AS : after stimulus; BS : before stimulus							
1	Not in line with the BCI needs 🛛 😬	Could be improved	d 🕐 In lin	e with the BCI ne	eds		
IWES 2018	Se	ptember 13-14, 2018			Siena, Ital		

Our Aim is...

Signal	Physiological Phenomena	Number of choices	Training Time	Transfer rate	Mean Accuracy
P300	Positive peaks due to single or rare stimulus	<9	Hours 🚽	20-25 bits/min	84%

Create a P300-based BCI system for the remote control of mechatronic device, which ensures:

- □ High accuracy in detection
- **Given Stage Fast User-Centered Machine Learning Stage**
- Computationally easy algorithms for portable hardware (Raspberry Pi, Microcontrollers, FPGAs, etc.)
- No brain signals modulation request
 Quick and accurate intention recognition

The architecture

Introduction Methods Results Conclusions

The Hardware & Environment

The adopted stimulation protocol is a custom visual **oddball paradigm**:

visual stimulation.

- **random flash** on a display (25% occurrence).
- inter-stimuli (ISI) time 500ms.

□ Introduction

Methods

Results

The Hardware & Environment

100

THE **PRE-PROCESSING**

Filtering:

- Bandpass Filtering (8th order Butterworth Filter: 0.5 – 30 Hz)
- □ 4th order Notch Butterworth : 48 52 Hz
- □ 4th order Low Pass Butterworth : **13 Hz**

Data slicing:

The EEG data are decomposed in data blocks (observation) of 600ms.

□ Introduction

Conclusions

□ Methods

Results

T-RIDE: P300 CHARACTERIZATION

The ML stage is entrusted to the **tuned - Residue Iterative Decomposition (t-RIDE)** approach [1]. It is based on the hypotesis of **well-structured brain response.**

t-RIDE divides the signal into two (or three) components:

Stimulus recognition Stimulus Classification: P300 (Optional) Active Response

[1] D. De Venuto, V. F. Annese and G. Mezzina, "Remote Neuro-Cognitive Impairment Sensing Based on P300 Spatio-Temporal Monitoring," in *IEEE Sensors Journal*, vol. 16, no. 23, pp. 8348-8356, Dec.1, 2016.doi: 10.1109/JSEN.2016.2606553

f4 = 0

400

THE P300 FEATURE EXTRACTION

Feature #1: Symmetry

Feature #2: Convexity

Feature #5: NSC

Feature #3: ITA

Feature #4: PPD

Feature #6: Cumulative Sum

IWES 2018

September 13-14, 2018

400

400

The Dimensionality Reduction

□ Introduction □ Methods □ Results Conclusions

With 6 features per channels, a general classifier extracts the decision boundaries on the 2-by-2 combinations. In this case it will work on 630 2D subspaces. To address the issue, in case of real-time prediction, the NCA algorithm for features selection has been implemented in the ML chain.

The **Neighborhood Component Analysis approach** defines the average probability of correct classification as:

$$F(w) = \sum_{i=1}^{N_0} p_i - \lambda \sum_{r=1}^{N_f} w_r^2$$

p_i : probability of correct classification of the observation. w_r : desired feature weights. λ : regularization parameter.

The system automatically maximize F(w), choosing opportunely λ .

THE CLASSIFICATION BOUNDARIES

The **features** are used to train an **"One vs All"** Support Vector Machine (SVM).

Separating criterion: Radial basis (Gaussian).

It isolates the i-th target from the others, defining, on each subspace

$$N_{sub-sp} = \frac{N_{fts}!}{2! \cdot (N_{fts} - 2)!}$$

area in which only the desired target can be present.

□ Introduction

Conclusions

□ Methods

Results

The Real Time Classification

Rule #1. If **P**i,j,T is in the areas delimitated by the SVM-based boundaries ($SVMb_{i,j,T}$), **F** \rightarrow **1** $SCORE_T = \frac{\sum_{i=1}^{N_{sub-sp,T}} F(P_{i,j,T} < SVMb_{i,j,T})}{N_{sub-sp,T}}$

The target with the highest relative score is labelled as the choice.

Rule #2. The score of the ambiguous targets is then re-assigned in a weighted version as: $SCORE_{T}^{W} = \frac{\sum_{i=1}^{N_{sub-sp,T}} W_{T}(i) * F(P_{i,j,T} < SVM_{i,j,T})}{N_{sub-sp,T}}$ with $W_{T}(i)$ the vector that contains the features weights.

□ Introduction

Conclusions

Methods

□ Results

The PCS: Mechatronic Actuator

Introduction
 Methods
 Results
 Conclusions

Central Unit: Arduino UNO Rev 3 (ATMega 328 P-PU Microcontroller); **2 DC motors** control the propulsion of the vehicle **1 Servomotor** controls the steering; **3 ultrasonic sensors** for automated navigation System; **Other** components: DC-DC 1 converter; 1 HC-05 Bluetooth Module, 1 h-bridge; 18650 batteries (3.7V and 2700mAh)

The Experimental Results

Dimensionality reduction allows passing from, i.e., $\mathbf{F} \in \mathbb{R}^{300, 36} \rightarrow \mathbf{Fn} \in \mathbb{R}^{300, 7}$, by minimizing the CIL loss. For example, the 7 selected features allow the classifier extracting decision boundaries on 21 subspaces w.r.t. 630 ones.

⁽a) Classifier in loop loss vs λ (b) selected features

The P300 is easily recognizable on CP1 by its symmetry and number of change (low), on Pz by the Latency-Max distance and an high triangle area distinguishes the P300 on CP2.

(a) Occurrence of the extracted features (b) Physical significance of the main features

□ Introduction

Conclusions

Methods

□ Results

The Experimental Results

Introduction
 Methods
 Results
 Conclusions

The system accuracy is, on average (7 subjects), 84.28 ± 0.87 % (Figure a).

□ The accuracy increasing reaches the steady-state accuracies only after 13 targets and 52 not targets (ML timing ~ 33 s).

 An Independent Component Analysis approach has been used to train the same system, (Figure b). ICA-trained system needs higher number of trials (26 targets and 104 not targets) to reach an accuracy slightly higher than a t-RIDE-trained BCI but later (ML timing >60s).

The Experimental Results

Timing^{*1}:

Buffer: 500ms

Time (ns)

IWES 2018

Sub1	83.42	83.68	89.8	84.9	Sub1	0	0.3664	0.4494	0.3535
(%) Sub2	87.82	85.05	88.01	85.32	pjec Sub2	0.6346	0.1451	2.108	0.1404
pjec Sub3	86.78	80.78	85.78	83.69	S Sub3	1.144	0.5285	0.4048	0.8418
NS Sub4	84.75	84.81	84.82	81.59	Sup4	0.0788	0.7718	1.667	2.515
Sub5	85.39	80.63	83.46	80.87	De Sub5	0.6267	0.8005	0.2416	0.3117
Accu Accu	85.44	84.5	85	85.06	Sub6	0.9088	0.4991	1.231	0.2527
Sub7	84.34	85.03	74.37	84.68	NO Sub7	1.799	1.753	0.2285	2.346
a) T1	T2	Т3	T4	(b) T1	T2	Т3	T4

(a) Heatmap of Subject mean accuracies vs directions (b) Heatmap of Subject accuracies standard deviations vs directions

^{*1} The system has been implemented on a PC with Intel i5 processor and 16 GB RAM Communication BCS-PCS: 3.5 ns

September 13-14, 2018

Complete FE stage : 19.58±9.7ms

Decision: 0.067±0.008ms

Video Demonstration

□ Introduction □ Methods **Results Conclusions**

Experimental

Event Triggered

Conclusions

The BCI is promising method in assistive technology, diagnostic and rehabilitative application field but can be used also to assist the autonomous driving.

- A P300-based BCI has been developed, realized and tested on a **prototype car** based on Arduino UNO.
- The ML stage uses an innovative architecture, which guarantees a good operation speed and a reduction of requested amount of data
- The implementation of a **subjectivity-based feature selection**, allows **fast user's intention recognition**
- The Support Vector Machine-inspired classifier shows classification accuracy of 84.28 ± 1.24 % (tested on 7 subjects)