

Italian Workshop on Embedded Systems Siena, Italy, September 13-14 2018

A safety-oriented engineering process for autonomous robotic systems

Fabio Federici, Giulio Mosé Mancuso

Created at UTRC-ALES

UTC PROPRIETARY - This document contains no USA or EU export controlled technical data.

United Technologies Research Center

Overview

- UTC: BU needs and supporting capabilities
- Certification issues
- Proposed design flow
- Technology Evaluation
- Open points

UTC and intelligent systems

UTC PROPRIETARY – This page does not contain any export controlled technical data

United Technologies Research Center

Relevant standards

Safety related certification

- IEC 61508: Functional safety of Electrical/Electronic/Programmable Electronic Safety-related Systems
- SAE ARP 4765A: Guidelines For Development Of Civil Aircraft and Systems
 - RTCA DO 254
 - RTCA DO 178C
- ISO 10218-1: Safety requirements for industrial robots Part 1: Robots
- ISO 10218-2: Safety requirements for industrial robots -- Part 2: Robot systems and integration
- ISO 13482: Safety requirements for personal care robots

Design and verification flow

Wnited Technologies Research Center

Robotics Architecture Design Patterns

Development of HW/SW Platform

Current collaborations:

United Technologies Research Center

Heterogeneous platforms

Goal: use of COTS heterogeneous devices

- Low-cost
- Short time to market

Problems:

- Sophisticated (obfuscated) components
- Greater complexity
- Resource sharing potentially jeopardizing safety

Need for efficient middlewares

HIROS

Open-source, meta-operating system for robots Hardware abstraction,

- Low-level device control,
- Commonly-used functionality,
- Message-passing between processes,
- Package management.

Pros:

- Widely adopted
- Large community
- Out of the box support for devices
- Algorithms & Libraries

Cons:

- Lack of determinism
- Not well fit for safety critical systems

:::2

Fork of ROS based on the Data Distribution Service (DDS).

 DDS is suitable for real-time distributed embedded systems due to its various transport configurations (e.g., deadline and fault-tolerance) and scalability.

Pros:

- Real-time, deterministic
- Support for multiple communication middlewares
- Compatibility with ROS

Cons:

- Maturity level
- Adoption

Jailhouse partitioning hypervisor

Linux Kernel			
CPU	CPU	CPU	CPU

Jailhouse:

- Partitioning Hypervisor based on Linux.
 - Able to run bare-metal applications or (adapted) operating systems.
- Init Linux Kernel
- Originally developed by Siemens
 - Released as Free Software (GPLv2) since November 2013

Linux Kernel				
Jailhouse				
CPU	CPU	CPU	CPU	
Root Cel				

Linux Kernel		RTOS
Jailhouse		
СРИ СРИ	СРО	СРИ
Root Cell		

Pros:

- Native support for the Linux kernel
- Low latencies, good performance
- Open Source (GPL v2)
- Ported on several embedded platforms (Xilinx Zynq, Nvidia Jetson TX1/TX2)

Limitations:

- System boot depends on the Linux Kernel
- No partition scheduling, only static resource assignment
- Limited maturity

Ongoing activity on demo Platform

<i>,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		 Root cell running ROS executed on the Denver Cluster
ICP ROS Linux	IO Management/ Control app RT-Linux	 GPU accelerated ICP: KinectFusion algorithm Around 108 Hz execution speed
	Jailhouse	
Nvidia Denver 2	ARM Cortex-A57	ARM Cortex-A57
Nvidia Denver 2	ARM Cortex-A57	ARM Cortex-A57
Pascal GPU	NVIDIA Jetson TX2	

Summary and Open Points

Activities

- Definition of a safety oriented flow for robotics systems
- Analysis and design of a robotic hardware/software architecture
- Assessment of open-source technologies

TODOs & Open points

- Consolidation of MBD flow
 - Bringing in RobMoSys approach
- Additional isolation mechanism to be introduced in Jailhouse
 - Long-term need: mature, certifiable hypervisor
- Verification

Questions?

