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Overview

 UTC: BU needs and supporting capabilities
 Certification issues
 Proposed design flow
 Technology Evaluation
 Open points
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UTC and intelligent systems
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Focus area
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Relevant standards

Safety related certification

 IEC 61508: Functional safety of Electrical/Electronic/Programmable 
Electronic Safety-related Systems

 SAE ARP 4765A: Guidelines For Development Of Civil Aircraft and Systems
 RTCA DO 254
 RTCA DO 178C

 ISO 10218-1: Safety requirements for industrial robots - Part 1: Robots
 ISO 10218-2: Safety requirements for industrial robots -- Part 2: Robot 

systems and integration 
 ISO 13482: Safety requirements for personal care robots 
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HW/SW Platform Design Flow
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Robotics Architecture Design Patterns
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Development of HW/SW Platform

Hypervisor

RTOS

Task/Skill Layer

Robotic Middleware/ 
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Current collaborations:
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Heterogeneous platforms

Goal: use of COTS heterogeneous devices
 Low-cost
 Short time to market

Problems:
 Sophisticated (obfuscated) components
 Greater complexity
 Resource sharing potentially jeopardizing safety

NVIDIA Jetson TX2 System-on-Module
 Quad-core ARM Cortex A-57
 Dual-core NVidia Denver 2
 NVidia Pascal GPU w. 256 CUDA cores

Zynq UltraScale+ MPSoC
 Quad-core ARM Cortex A-53
 Dual-core ARM Cortex-R5
 ARM Mali 400 MP2 GPU
 16 nm FinFET+ Programmable Logic

TARGET PLATFORMS

Multicore CPU

GPU FPGA

I/O Interfaces
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Need for efficient middlewares

Open-source, meta-operating system for
robots Hardware abstraction,
 Low-level device control,
 Commonly-used functionality,
 Message-passing between processes,
 Package management.

Pros:
 Widely adopted
 Large community
 Out of the box support for devices
 Algorithms & Libraries

Cons:
 Lack of determinism
 Not well fit for safety critical systems

Pros:
 Real-time, deterministic
 Support for multiple communication

middlewares
 Compatibility with ROS

Cons:
 Maturity level
 Adoption

Fork of ROS based on the Data
Distribution Service (DDS).
 DDS is suitable for real-time distributed

embedded systems due to its various
transport configurations (e.g., deadline and
fault-tolerance) and scalability.
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Jailhouse partitioning hypervisor

Pros:
 Native support for the Linux kernel
 Low latencies, good performance
 Open Source (GPL v2)
 Ported on several embedded platforms (Xilinx Zynq, Nvidia

Jetson TX1/TX2)

Limitations:
 System boot depends on the Linux Kernel
 No partition scheduling, only static resource assignment
 Limited maturity

CPU CPU CPU CPU

Linux Kernel

CPU CPU CPU CPU

Jailhouse

Linux Kernel

Jailhouse

Linux Kernel

CPU CPU CPU CPU

Jailhouse

Linux Kernel

CPU CPU CPU CPU

RTOS

Root Cell

Root Cell

Init

Jailhouse:
 Partitioning Hypervisor based on Linux.

 Able to run bare-metal applications or (adapted)
operating systems.

 Originally developed by Siemens
 Released as Free Software (GPLv2) since November 2013
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Ongoing activity on demo Platform

Jailhouse

ARM Cortex-A57

ROS

ARM Cortex-A57Nvidia Denver 2

ARM Cortex-A57

ARM Cortex-A57

Nvidia Denver 2

Pascal GPU

Linux

NVIDIA Jetson TX2

RT-Linux

IO Management/
Control app

ICP

 Root cell running ROS executed on the
Denver Cluster

 GPU accelerated ICP:
 KinectFusion algorithm
 Around 108 Hz execution speed
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Summary and Open Points

Activities
 Definition of a safety oriented flow for robotics systems
 Analysis and design of a robotic hardware/software architecture
 Assessment of open-source technologies

TODOs & Open points
 Consolidation of MBD flow

 Bringing in RobMoSys approach
 Additional isolation mechanism to be introduced in Jailhouse

 Long-term need: mature, certifiable hypervisor
 Verification
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Questions?
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