
A safety-oriented engineering process for 
autonomous robotic systems

Italian Workshop on Embedded Systems
Siena, Italy, September 13-14 2018

Fabio Federici, Giulio Mosé Mancuso

Created at UTRC-ALES

UTC PROPRIETARY - This document contains no USA or EU export controlled technical data.



Overview

 UTC: BU needs and supporting capabilities
 Certification issues
 Proposed design flow
 Technology Evaluation
 Open points

UTC PROPRIETARY – This page does not contain any export controlled technical data



UTC and intelligent systems

UTC Business Units

UTC Aerospace Systems

 Actuation & Propeller Systems
 Air Management Systems
 Landing Systems
 Electric Systems
 Engine Systems
 Sensors & Integrated Systems

UTC Climate, Controls and Security

 Intelligent building Technologies
 Heating & Cooling
 Fire Safety & Security
 Refrigeration

Pratt & Whitney

 Commercial and Military Aircraft 
Engines

 Auxiliary Power Units
 Helicopter Engines

OTIS

 Elevators
 Escalators
 Moving Walkways

3D 
Reconstruction

Dense 
Mapping

Visual 
Inspection Perception

Navigation Autonomous 
Exploration Manipulation Activity 

Prediction

Inspection Assembly Manipulation Grinding

Deburring Welding Mapping Autonomous 
TransportationU

se
 C

as
es

C
ap

ab
ilit

ie
s

UTC PROPRIETARY – This page does not contain any export controlled technical data



Focus area

HW Platform

OS / Middleware

Application

HW Platform

Low-level Control 
Software

Robot 
Frame

COTS robotic platform

OS / Middleware / 
Middleware interface

Sensors ActuatorsSensors

Higher-level control platform

Personal Computer

OS / Middleware

User Application

User/Base Platform

Environment

Ex
am

pl
e

Ground 
Control 
Station

High-level 
Controller

Flight 
Controller/
Quadcopter 

Frame

UTC PROPRIETARY – This page does not contain any export controlled technical data



Relevant standards

Safety related certification

 IEC 61508: Functional safety of Electrical/Electronic/Programmable 
Electronic Safety-related Systems

 SAE ARP 4765A: Guidelines For Development Of Civil Aircraft and Systems
 RTCA DO 254
 RTCA DO 178C

 ISO 10218-1: Safety requirements for industrial robots - Part 1: Robots
 ISO 10218-2: Safety requirements for industrial robots -- Part 2: Robot 

systems and integration 
 ISO 13482: Safety requirements for personal care robots 

UTC PROPRIETARY – This page does not contain any export controlled technical data



CARVE 
(CONTRACT 

BASED 
DESIGN)

Design and verification flow

HW/SW 
PLATFORM 

DESIGN 
FLOW

Feature Requirements

System Requirements 
Development/Modeling

Concept Development

System Architecture

Model Development

PLATFORM 
LEVEL

SYSTEM
LEVEL

MODULE
LEVELREQUIREMENTS

DESIGN

CODING

DEPLOYEMENT

REQUIREMENTS & 
ARCHITECTURE 

(MODEL)

IMPLEMENTATION
(PHYSICAL)

VALIDATION

VALIDATION

HAZARD 
ANALYSIS

PRELIMINARY 
SYSTEM 
SAFETY 

ASSESSMENT, 
CCA

PRELIMINARY 
MODULE SAFETY 

ASSESSMENT, CCA

RobMoSys

UTC PROPRIETARY – This page does not contain any export controlled technical data

MIL

SYSTEM INTEGRATION & 
TEST

ITEM INTEGRATION & 
TEST

FUNCTION INTEGRATION & 
TEST

LOW-LEVEL 
TESTING

SW-SW 
INTEGRATION

HW-SW 
INTEGRATION

SIL VPIL



HW/SW Platform Design Flow

Hardware Safety 
Requirement 
Specification

Software Safety 
Requirement 
Specification

System Safety Requirements Specification

Hardware 
Architecture

Software 
Architecture

System Architecture Specification/Design

Module Design

Module 
Development

Module 
Testing

Module 
Integration 

Testing

HW/SW 
Integration 

Testing

Hardware 
Design

Software 
Design

Integration Testing

Validation 
Testing

Re-use
Safety Cases 

(Platform, Kernel, 
Fault Domains)

UTC PROPRIETARY – This page does not contain any export controlled technical data

Architectural 
Patterns

Fault Hazard AnalysisFunctions



Robotics Architecture Design Patterns

MISSION

TASK

SKILL

SERVICE

FUNCTION

EXECUTION 
CONTAINER

OS/MIDDLEWARE

HARDWARE

SKILL 
LAYER

SEQUENCING 
LAYER

DELIBERATIVE 
LAYER

CARVE: use of 
behavior trees

Internal 
research 
investigation

UTC PROPRIETARY – This page does not contain any export controlled technical data

→

? ?



Development of HW/SW Platform

Hypervisor

RTOS

Task/Skill Layer

Robotic Middleware/ 
Bridge Health 

Monitoring 
FunctionsGeneral Purpose OS

Robotic Middleware

Mission Layer

Task Layer

Multicore CPUGPU FPGA I/O Interfaces

Current collaborations:

UTC PROPRIETARY – This page does not contain any export controlled technical data

RTOS

I/O Server

Robotic 
Middleware/ 

Bridge



Heterogeneous platforms

Goal: use of COTS heterogeneous devices
 Low-cost
 Short time to market

Problems:
 Sophisticated (obfuscated) components
 Greater complexity
 Resource sharing potentially jeopardizing safety

NVIDIA Jetson TX2 System-on-Module
 Quad-core ARM Cortex A-57
 Dual-core NVidia Denver 2
 NVidia Pascal GPU w. 256 CUDA cores

Zynq UltraScale+ MPSoC
 Quad-core ARM Cortex A-53
 Dual-core ARM Cortex-R5
 ARM Mali 400 MP2 GPU
 16 nm FinFET+ Programmable Logic

TARGET PLATFORMS

Multicore CPU

GPU FPGA

I/O Interfaces

UTC PROPRIETARY – This page does not contain any export controlled technical data



Need for efficient middlewares

Open-source, meta-operating system for
robots Hardware abstraction,
 Low-level device control,
 Commonly-used functionality,
 Message-passing between processes,
 Package management.

Pros:
 Widely adopted
 Large community
 Out of the box support for devices
 Algorithms & Libraries

Cons:
 Lack of determinism
 Not well fit for safety critical systems

Pros:
 Real-time, deterministic
 Support for multiple communication

middlewares
 Compatibility with ROS

Cons:
 Maturity level
 Adoption

Fork of ROS based on the Data
Distribution Service (DDS).
 DDS is suitable for real-time distributed

embedded systems due to its various
transport configurations (e.g., deadline and
fault-tolerance) and scalability.

UTC PROPRIETARY – This page does not contain any export controlled technical data



Jailhouse partitioning hypervisor

Pros:
 Native support for the Linux kernel
 Low latencies, good performance
 Open Source (GPL v2)
 Ported on several embedded platforms (Xilinx Zynq, Nvidia

Jetson TX1/TX2)

Limitations:
 System boot depends on the Linux Kernel
 No partition scheduling, only static resource assignment
 Limited maturity

CPU CPU CPU CPU

Linux Kernel

CPU CPU CPU CPU

Jailhouse

Linux Kernel

Jailhouse

Linux Kernel

CPU CPU CPU CPU

Jailhouse

Linux Kernel

CPU CPU CPU CPU

RTOS

Root Cell

Root Cell

Init

Jailhouse:
 Partitioning Hypervisor based on Linux.

 Able to run bare-metal applications or (adapted)
operating systems.

 Originally developed by Siemens
 Released as Free Software (GPLv2) since November 2013

UTC PROPRIETARY – This page does not contain any export controlled technical data



Ongoing activity on demo Platform

Jailhouse

ARM Cortex-A57

ROS

ARM Cortex-A57Nvidia Denver 2

ARM Cortex-A57

ARM Cortex-A57

Nvidia Denver 2

Pascal GPU

Linux

NVIDIA Jetson TX2

RT-Linux

IO Management/
Control app

ICP

 Root cell running ROS executed on the
Denver Cluster

 GPU accelerated ICP:
 KinectFusion algorithm
 Around 108 Hz execution speed

UTC PROPRIETARY – This page does not contain any export controlled technical data



Summary and Open Points

Activities
 Definition of a safety oriented flow for robotics systems
 Analysis and design of a robotic hardware/software architecture
 Assessment of open-source technologies

TODOs & Open points
 Consolidation of MBD flow

 Bringing in RobMoSys approach
 Additional isolation mechanism to be introduced in Jailhouse

 Long-term need: mature, certifiable hypervisor
 Verification

UTC PROPRIETARY – This page does not contain any export controlled technical data



Questions?

UTC PROPRIETARY – This page does not contain any export controlled technical data


