Low noise, low power capacitive sensors for tagless indoor human localization and identification

Mihai Lazarescu, Luciano Lavagno Politecnico di Torino Dip. Elettronica e Telecomunicazioni mihai.lazarescu@polito.it, luciano.lavagno@polito.it

Contents

Why long-range capacitive sensing?

- Capacitance measurement issues
- Single-plate capacitance measurement
- Person identification with low-power neural networks
- Conclusions

Why long-range indoor capacitive sensing?

Enabler for many automation and monitoring applications

- Can be small, inexpensive, easy to install and operate
- Generally have low accuracy and low range
- Meed very low noise measurement (C ~ A / d^{2÷3})
- Sensor data post-processing
 - Improve SNR (ΔC < 0.01%)
 - Infer human identity, location and behavior

3

Single-plate threshold-based measurement front-end

C = Q / V

5

- Control Q flow, set V thresholds
- Measure f ~ 1 / time-to-V threshold
- Şimple, cheap, low-power
- Low C, low I for kHz-range f (lower quantization noise)
 - Very high impedance input
 - Susceptible to EM noise (Vnoise => f value & jitter)
 - Susceptible to drift (low frequency noise)
 - Difficult noise filtering
 - Low SNR overall

R1

R2

Astable

Multi

Vibrator

Main sources of noise

Drift due to static charges (low frequency)

- Change plate potential to environment
- Variable with body movement, charge migration

Environmental noise (high freq.)

From explainthatstuff.com

- Jitter and reduced osc. Period (plate reaches unpredictably and earlier voltage thresholds)
- Fix: 1. voltage thresholds 2. compensate current asymmetry

Italian Workshop on Embedded Systems (IWES)

6

Human identification

Measure the body-sensor capacitance at several frequencies at (almost) the same time

- Capacitance-frequency dependency pattern depends on body properties (tissue ratios, shape, ...)
- Distinct patterns can identify persons from a limited pool
- Monitor passage through doors

Embedded Iow power Neural Network inference

	<u>*</u>	*	*	K		Hidden Layer			
0.8	-					1	2	3	4
0.7	-			ch layer	4	5,23 %	5 %	4,8 %	4,88 %
0.6	-				8	4,93 %	4,9 %	4,9 %	4,91 %
0.5			-	in ea	16	4,98 %	4,89 %	4,93 %	4,89 %
0.4	1 1.5	2 2.5	3 3.5	Number of nodes i	32	4,94 %	4,85 %	4,86 %	4,85 %

- Noise-augmented data to 40,000 tuples: 28,000 training, 12,000 test
- Little degradation for small NNs on data augmented with noise
- 2 hidden layers with 8 neurons each for implementation exploration

9

11

Conclusions

Indoor low-cost low-power capacitive sensing may enable many smart applications

- Needs effective broadband noise reduction
- Løw-power analog and digital processors (µP, FPGA, ...)
- Low-power communication (used sparingly)

Low-resource measurement and processing techniques

Thank you.

Mihai Lazarescu, Luciano Lavagno Politecnico di Torino Dip. Elettronica e Telecomunicazioni mihai.lazarescu@polito.it, luciano.lavagno@polito.it