

A New Model for Measuring the Performance Cost of Deadline Misses

Authors:

Paolo Pazzaglia, Luigi Pannocchi, Alessandro Biondi, Marco Di Natale

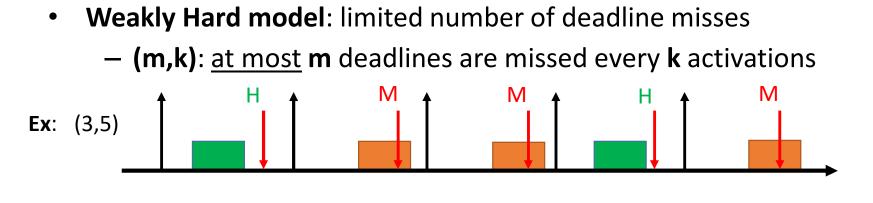
Scuola Superiore Sant [']Anna, Pisa paolo.pazzaglia@santannapisa.it

Siena, IWES, September 14th, 2018

Introduction

- Embedded systems with control tasks may face **overload** conditions (e.g. automotive)
- <u>Common (practical) approach</u>: running at a high rate and allowing some **deadline miss** is an acceptable compromise
- Missing (few) deadlines: not catastrophic!

How to study performance evolution under overload conditions?



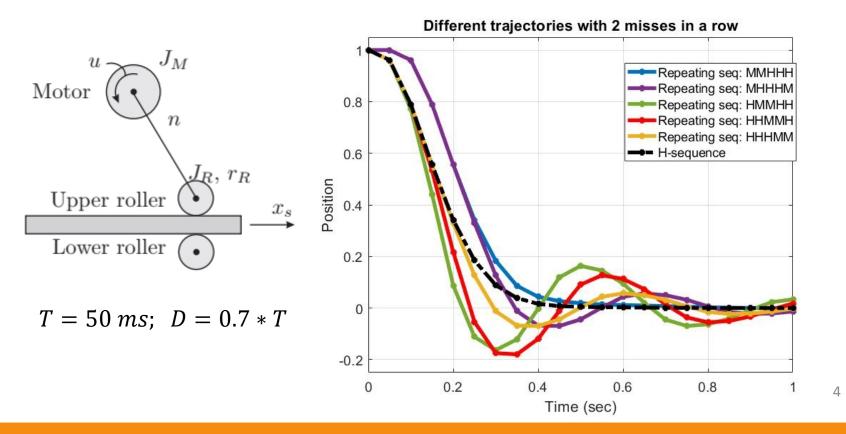
Weakly hard model limitations

- (m,k) constraint is not enough descriptive...
- (m,k) constraint leads to a **binary** model (either pass or fail)
 - Easy to define stability guarantees
 - No information about performance of different patterns
 - Difficult to extract an **ordering** between constraints
- No relation with the system state:
 - Deadline misses may have different effects (transients vs steady state)

Weakly hard model limitations

Different patterns of H/M deadlines lead to different performance evolutions!

Assumption: When a deadline is missed, the control output is not updated



A New Model for Measuring the Performance Cost of Deadline Misses

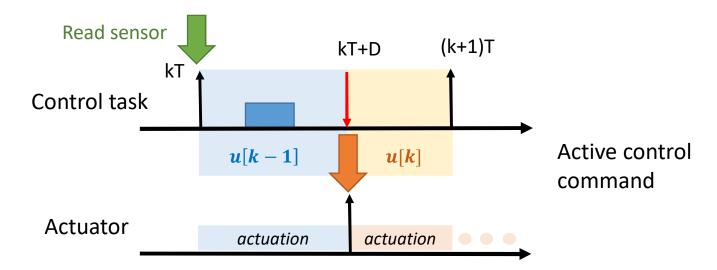
P. Pazzaglia

A new model for performance analysis

- <u>Goal:</u> Developing a new model for studying:
 - How the performance changes with different patterns of missed deadlines that satisfy a given (m,k) constraint
 - Worst guaranteed performance
 - Different policy at deadline miss (continue or kill?)
- Merging real-time analysis with control system dynamics and performance analysis

System model

- Linear Time Invariant plant, MIMO
- Periodic control of period T_i and deadline $D_i \leq T_i$
- State-feedback control: u[k] = K(r[k] x[k])



State update function: $x[k + 1] = A_d x[k] + B_{d1}u[k - 1] + B_{d2}u[k]$

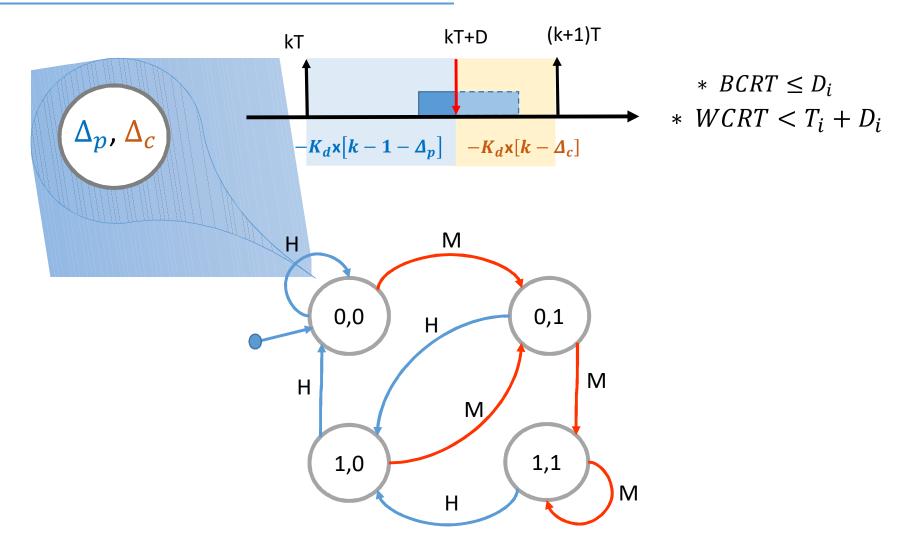
• Similar to LET model: trading jitter for latency

Missing a deadline kT kT+D (k+1)TControl task u[k-1] u[k]?

- Missing a deadline means missing an actuator command update:
 <u>Keep the previous actuation value</u>
- The system dynamics changes!

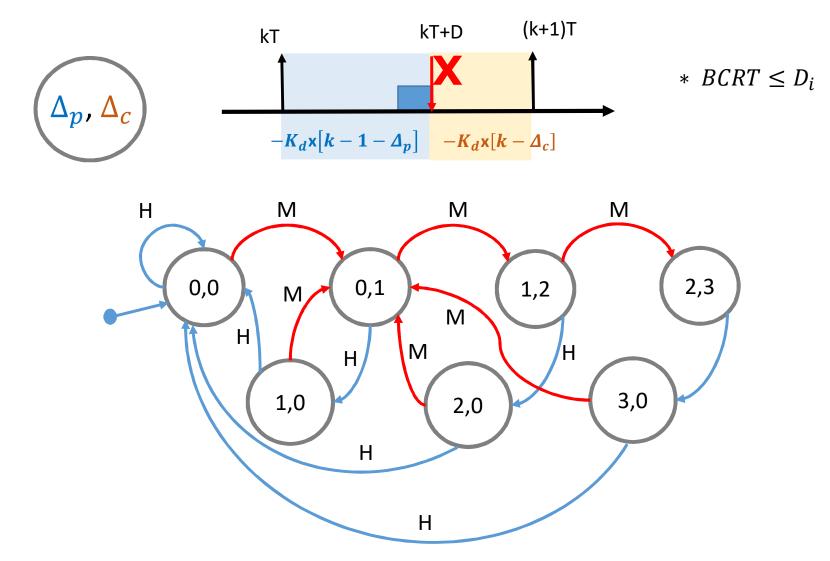
• Update freshness Δ (ageing steps) of the control output

Update freshness: Continue strategy



P. Pazzaglia

Update freshness: Kill strategy



In this example, maximum number of consecutive deadline misses is equal to 3

A New Model for Measuring the Performance Cost of Deadline Misses

P. Pazzaglia

State update matrix

- System dynamics as a function of freshness pairs $x[k+1] = A_d x[k] - B_{d1} K_d x[k-1-\Delta_p] - B_{d2} K_d x[k-\Delta_c]$
- Augmented state vector $\xi[k]$

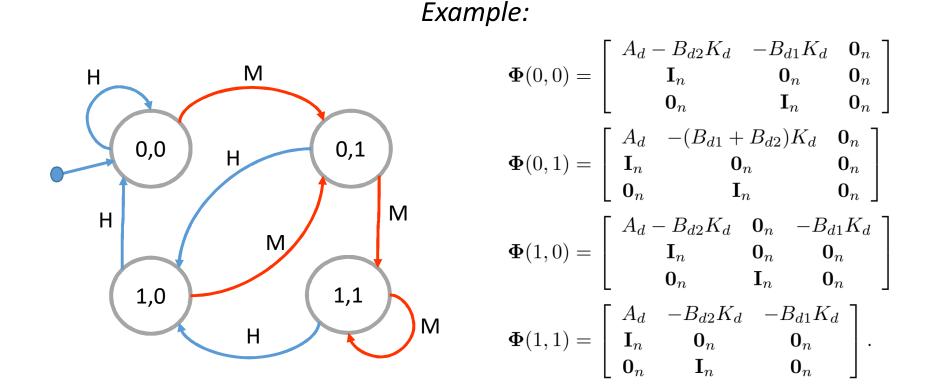
$$\begin{split} \boldsymbol{\xi}[k] &= [\boldsymbol{x}[k]; \boldsymbol{x}[k-1]; \dots \boldsymbol{x}[k-\Delta_{max}-1]] \\ & \quad \boldsymbol{\xi}[k+1] = \boldsymbol{\Phi}(\boldsymbol{\varDelta}_p, \boldsymbol{\varDelta}_c \;) \; \boldsymbol{\xi}[k] \end{split}$$

• State update matrix $\Phi(\Delta_p, \Delta_c)$

$$\Phi(\Delta_{p}, \Delta_{c}) = \begin{bmatrix} A_{d} & \cdots & -B_{d2}K_{d} & \cdots & -B_{d1}K_{d} & \cdots \\ I_{n} & 0_{n} & \cdots & \cdots & \cdots \\ 0_{n} & I_{n} & 0_{n} & \cdots & \cdots \\ \vdots & \vdots & \vdots & \ddots & \cdots & \cdots \end{bmatrix}$$

State update matrix: an example

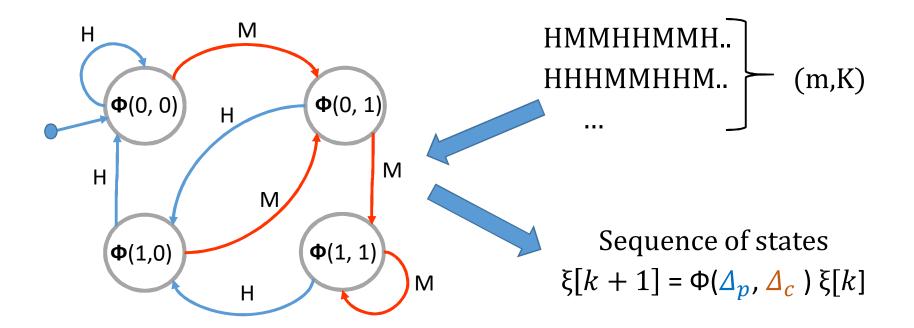
• Every combination of (Δ_p, Δ_c) is mapped to a specific dynamic of the system through the matrix $\Phi(\Delta_p, \Delta_c)$



Constrained switched linear system

State update matrix: an example

• Every combination of (Δ_p, Δ_c) is mapped to a specific dynamic of the system through the matrix $\Phi(\Delta_p, \Delta_c)$ *Example:*



Constrained switched linear system

P. Pazzaglia

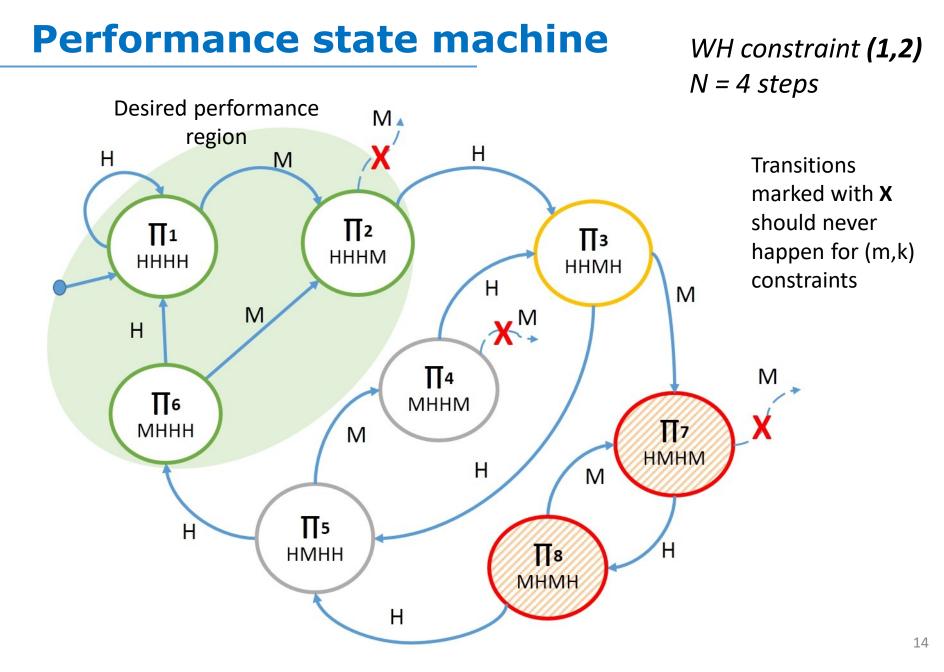
Performance analysis

- Assign a **performance value** for each sequence of N jobs
- Sum of quadratic error

$$P(s) = \sum_{i=0}^{N-1} \xi[i]^T \xi[i]$$

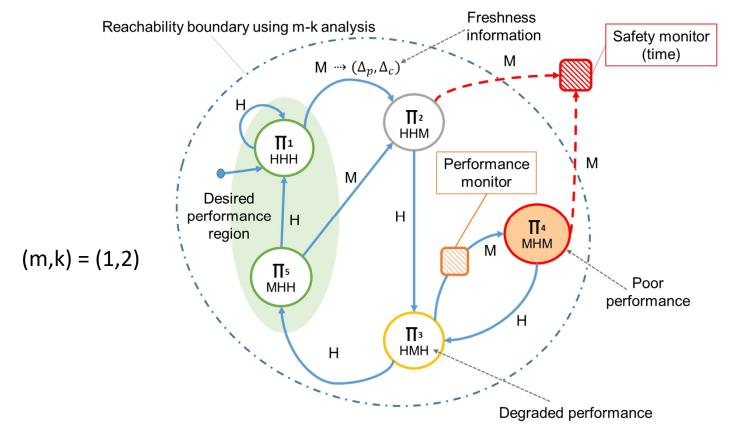
= $\xi[0]^T \left(\mathbf{I} + \mathbf{\Phi}_0^T \mathbf{\Phi}_0 + \mathbf{\Phi}_0^T \mathbf{\Phi}_1^T \mathbf{\Phi}_1 \mathbf{\Phi}_0 + \dots + \mathbf{\Phi}_0^T \mathbf{\Phi}_1^T \cdots \mathbf{\Phi}_{N-1}^T \mathbf{\Phi}_{N-1} \cdots \mathbf{\Phi}_1 \mathbf{\Phi}_0 \right) \xi[0]$
= $\xi[0]^T \mathbf{\Psi}(s) \xi[0]$

- Matrix elements of $\Psi(s)$ depends on the **ordered** sequence of H/M
- $\prod(s) = ||\Psi(s)||_2$
- Worst Case Normalized Performance: $WCPn = \frac{max_s \prod(s)}{\prod(all \ hits)}$



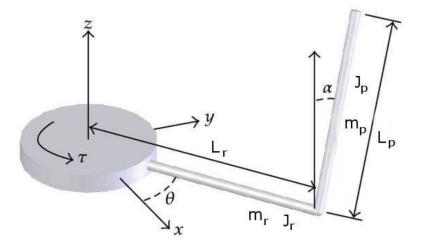
Possible applications

- This new model can be used as a **time contract** between software designers and control engineers
- Possibility of inserting run-time monitors

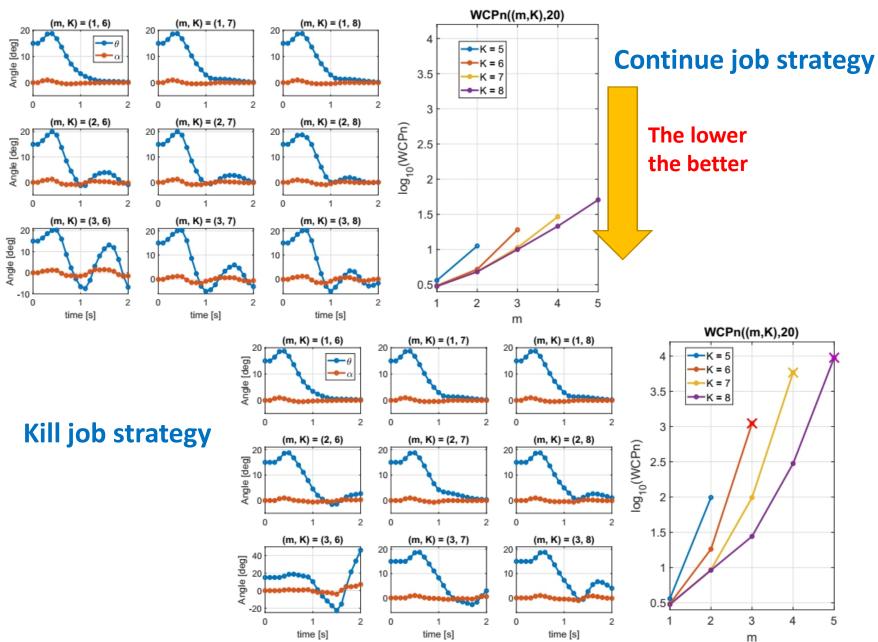


Case study: Furuta pendulum

• Furuta pendulum: rotary inverted pendulum



- Linearized model in the neighbourhood of the upward position
- Feedback control with $T_i = 0.1 sec$ and $D_i = 0.2 * T_i$
- Testing different (m,K) values and studying how Worst Case performance changes



Case study: Furuta pendulum

Summary

- New model for studying performance evolution under overload conditions
- 1. Creating a state machine for computing **freshness** of outputs, applicable to different patterns and handling of deadline misses
- 2. Intergrating freshness information with state evolution of the controlled system: different **operating modes**
- 3. Creating a state machine for computing **performance** values realted to patterns of H/M deadlines
 - Worst case performance guarantees
 - Runtime monitors for performance evolution
- Case study: Furuta pendulum

Future work

- Extensions:
 - Including additional performance metrics
 - Extending the case study to WCRT>T+D, allowing multiple pending jobs at deadline
- Finding **optimal controller** for a system under (m,K) constraints, for achieveing a given performance
- Adaptive control when deadline misses occur
- More complex case studies:
 - Testing non linear systems performance by simulation
 - More complex deadline miss handlings

Thank you!

paolo.pazzaglia@santannapisa.it

More details in

Paolo Pazzaglia, Luigi Pannocchi, Alessandro Biondi, and Marco Di Natale,

"Beyond the Weakly Hard Model: Measuring the Performance Cost of Deadline Misses",

Proceedings of the 30th Euromicro Conference on Real-Time Systems (ECRTS 18), Barcelona, Spain, July 3-6, 2018.

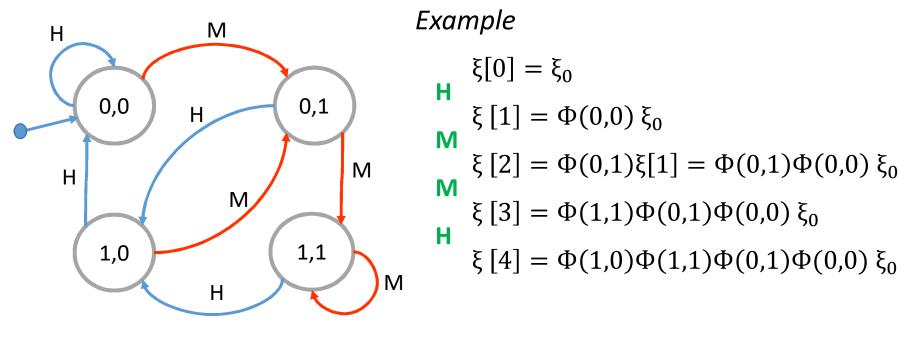
A New Model for Measuring the Performance Cost of Deadline Misses

P. Pazzaglia

Performance analysis

- How performance changes for different patterns of H/M deadlines?
- H/M patterns are mapped to state trajectories of the system

State update equation: $\xi[k+1] = \Phi(\Delta_p, \Delta_c) \xi[k]$



General state trajectory equation: $\xi[k+1] = \Phi_k \Phi_{k-1} \dots \Phi_0 \xi_0$

