

Department of Control and Computer Engineering

5

CAD for VLSI

- EDA for energy-efficient systems
 - Leakage management in DSM designs
 - Power-gating of standard-cell designs and memories
 - Energy-efficient chip multicore
 - Energy-efficient memory sub-system design
 - Technology implications of voltage/frequency scaling

• EDA for "indirect metrics"

- Thermal-aware design & architectures
 - Adaptive compensation of thermal gradients
 - Leakage/Thermal-aware co-synthesis
 - Thermal-aware design of clock trees
- Variation-tolerant design techniques
 - Latency/skew control
 - Use of power management knobs (power gating) to compensate variations

CAD for VLSI (II)

- Approximations for edge-devices
 - Computation
 - Brain-inspired arithmetic
 - Complexity-driven scaling techniques
 - Architectural and circuit-level techniques for adaptive accuracy/energy scaling

- Data
 - HW-aware data manipulation e.g. image manipulations for OLEDs

CAD for VLSI (III)

• <u>CAD for beyond-CMOS technologies</u>

- Graphene devices

- Adiabatic computing with ambipolar resistive devices
- Delay and power modeling of devices based on p-n junctions based on polarized graphene
- Automated synthesis techniques for re-configurable gates based on these devices

- Computing-in Memory

- Algorithms for data-analytics in-memory
- Logic Synthesis & Mapping for logic-in-Memory

CAD for electrical energy systems

- CAD for electrical energy systems (EES)
 - Battery modeling
 - Battery metamodeling from datasheet
 - Battery modeling of inter-cycle effects (capacity fade, aging, etc.)
 - Macromodels for battery charge
 - Hybrid EESs
 - Optimal charge allocation/distribution/ /recycling policies
 - Interaction of charge distribution and power management
 - Thermal management of energy storage devices
 - Smart battery chargers
 - Non-standard algorithms/policies for fast charge

CAD for electrical energy systems

• CAD for electrical energy systems (EES)

- General Cyber-Physical Energy Systems
- Open-source, extensible
 SystemC/AMS+IP-XACT simulation
 framework
- Implementation of smart policies
- Extension to extra-functional properties
 - Aging
 - Temperature
 - Operational cost

A CONCORT

CAD for Smart-Things & App

- Cross-domain application of EDA methods to
 - Smart cities
 - Smart fabs

CAD for Smart-Society: Cities

To design and deploy sensing technologies for energy efficient...

- Energy efficient wireless sensor networks
- Middleware for heterogeneous energy data integration
- Web-services-oriented software infrastructure for interoperability of
 - Sensor data
 - Building models
 - District/network models
- Visualization techniques using A/R, V/R to enable Ambient Energy Intelligence.

CAD for Smart-Society: Fabs

- Smart Manufacturing:
 - Minimization of resources in production lines
 - Improvement of product quality through optimization of process parameter
 - Reduction of defects (e.g. porosities) in the final product
- Technologies:
 - Analysis of process parameter and characterization
 - Casting process modeling using machine learning (black box modelling)
 - Heuristic parameter optimization
 - Integration of the black-box model in a simulation and visualization engine

Funded research

- JU ENIAC
 - **MOTORBRAIN**
 - ERG
 - **E2SG**
 - IDEAS
- **JU ARTEMIS**
 - -IOE
 - VETESS
 - **DEMANESS**
 - ARROWHEAD

- FP7/FET
 - SMAC (IP)

 - TOUCHMORE (STREP)
 - CONTREX (IP)
 - TRIBUTE (STREP)
 - **DIMMER (STREP)**

 - **READY4SMARTCITIES (CSA)**

 - HUMAN BRAIN PROJECT (FET)

 - LAB4MEMS (KET)

 - GRAPHENE (FET)

Legend: **SMART CITIES/BUILDING TECHNOLOGY/CAD**

AUTOMOTIVE ENERGY

eda.polito.it

CAD for Smart-Society: Cities

To design and deploy sensing technologies for energy efficient...

- <u>Buildings</u>, by management of:
 - Energy consumption of appliances, HVAC, lighting, etc...
 - Comfort level (temperature, humidity, CO2)
- <u>District</u>, by management of:
 - Water temperature (DH), indoor temperature
 - Renewable energy/energy storage
- <u>People</u>, by promoting energy-awareness using:
 - Augmented/virtual reality to expose energy consumption information and suggest green-like actions in the context
 - New business models, win-win billing strategies

CAD for Smart-Society: Cities

• Objective

 Design of a ultra low-power device and platform for out-/indoor air quality management

• Technologies:

- Sensor node assembly-
- Low power sensing strategies
- Firmware and SW programming

