IWES 2018 Energy-Efficient Deep Learning

Valentino Peluso

POLITECNICO DI TORINO

Department of Computer Engineering

Deep Learning at the edge of the IoT

Bring CNNs at the edge of the IoT

- Data-flow computing on embedded platforms
 - Ultra-low power architecture
 - Reconfigurable architecture (host different CNNs)

- Optimal software-to-silicon mapping (design automation)
 - Resource minimization

Fixed-Point CNNs

- Fixed-point (INT) arithmetic instead of floating-point (FP32) is a well established strategy for inference
 - FP32: ±S 1.M x 2^{EXP} [S=1b, M=23b, Exp=8b]
 - INT16: I.Q [8b.8b]
- Fixed-point arithmetic
 - require less memory
 - \rightarrow fit in resource-constrained HW
 - minimize memory bandwidth usage →leverage SIMD data-paths
 - achieve lower accuracy
 - reduced range
 - reduced precision

How to choose optimal precision

State-of-the-art: accuracy driven

 \rightarrow Need to consider also energy

1. Input-dependant

Dynamic bit-widith reconfiguration

2. Network-dependant

- Different DNNs show different tolerance
 - Topology (Size, Depth, #Kernels)
 - Trainable parameters (sparsity)
- Per-net quantization
 - Same precision for each and every layer
- Per-layer quantization

Exploit the dynamic range of activations and weights across different layers

Energy-Efficient Precision Scaling for ConvNets

Broad Objective:

- Enable Dynamic Energy-Accuracy Scaling
 - Run-time adaptation according
 - application requirements and/or the context
 - available energy budget
- Knobs:
 - Arithmetic precision
- Key feature:
 - No Retraining
 - Costly
 - Training data may be not always available
 - Make use of a single weight-model rather than multiple models

Outline

- Dynamic Bit-width Reconfiguration
- Energy-Aware Precision Scaling for ConvNets

Motivation

- Idea: not all inputs are equally hard to classify.
- Using the same fixed-point bit-width for all inputs may be suboptimal.
- Example:

Consequence: static bit-width solutions require assifying a costly retraining to (partially or totally) restore accuracy!

Proposed Approach

- Automatically adapt the bit-width to the current input.
- Reduce energy consumption compared to a *conservative* static bitwidth (e.g. 16-bit in the previous two examples).
- Increase accuracy compared to lower precision (e.g. 8-bit)
- General Framework:

Implementation Details

Data format: Dynamic Fixed Point

- Integer bits: fixed, determined from variation ranges of activations and weights in each layer
- Fractional bits: change depending on overall bit-width (may be negative)

Advantage: No storage duplication.

 Weights store at <u>maximum precision</u>, precision is reduced by LSB-truncation.

Runtime Bit-width Tuning

Classification "Confidence" Estimation

Uses the Score Margin (SM)

$$SM = P(y_i|x) - P(y_j|x)$$

- P(y_i | x) = output probability of the selected class
- P(y_i|x) = second largest probability.
- Idea:
 - Large difference \rightarrow only one class is probable
 - Small difference \rightarrow "uncertain" between at least two classes.

Decision Strategy:

- Compare SM with a **Threshold** (*Th*).
- Changing the threshold allows exploring the energy (i.e. number of inferences per image) versus accuracy trade-off.

Results

- Target CNNs: <u>CaffeNet</u> (i.e. Caffe's AlexNet, Krizhevsky et al., NIPS2012) and <u>CNN-M</u> (Chatfield et al, arXiv2014)
 - Same task: <u>ImageNet</u> classification.
- Target Accelerator: Envisions (Moons et al., ISSCC2017)
- Different networks yield very different tradeoffs:

Outline

- Dynamic Bit-width Reconfiguration
- Energy-Aware Precision Scaling for ConvNets

Per-net assignment

• Four options:

- 16b activations, 16b weights (16x16)
- 8b activations, 16b weights (8x16)
- 16b activations, 8b weights (16x8)
- 8b activations, 8b weights (8x8)
- Unconstrained assignment

、		CNN-1	CNN-2	CNN-3
)		input $32 \times 32 \times 3$	input $32 \times 32 \times 3$	input $32 \times 32 \times 3$
		$\operatorname{conv} 3 \times 3 \times 32$	$conv 3 \times 3 \times 32$	$\operatorname{conv} 3 \times 3 \times 32$
		$conv 3 \times 3 \times 64$	$conv 3 \times 3 \times 32$	$\operatorname{conv} 3 \times 3 \times 32$
	IIC	maxpool	maxpool	maxpool
	sctr	dense 128	$conv 3 \times 3 \times 64$	$conv 3 \times 3 \times 64$
	nite	dense 10	$conv 3 \times 3 \times 64$	$\operatorname{conv} 3 \times 3 \times 64$
	lic	softmax	maxpool	maxpool
	κA		dense 512	$conv 3 \times 3 \times 128$
	or		dense 10	$conv 3 \times 3 \times 128$
			softmax	maxpool
				dense 1024
	ccigr	nment		dense 512
	33181	incirc		dense 10
				softmax
			CIFAR-10	CIFAR-100
			20828426	25718538

Need for a finer precision assignment → cross-layer optimization

	32-bit FP	16×16 Fix	8×16 Fix	16×8 Fix	8×8 Fix
CNN-1	90.02%	90.01%	89.66%	76.64%	74.54%
CNN-2	81.77%	81.75%	80.99%	77.80%	72.17%
CNN-3	55.80%	55.82%	52.79%	22.27%	14.69%

IWES18 - 04/09/2018 - Siena

Optimization Flow

Results

Accuracy Results

Max. Drop λ_{max}	1%	5%	10%
CNN-1	89.69% (0.35%)	86.82% (3.55%)	86.82% (3.55%)
CNN-2	80.76% (1.21%)	77.77% (4.87%)	75.57% (7.56%)
CNN-3	55.20% (1.11%)	54.01% (3.24%)	51.54% (7.67%)

Per-layer Precision Scaling

CNN-1			CNN-2		CNN-3			
1%	5%	10%	1%	5%	10%	1%	5%	10%
8×16	8×8	8×8	8×16	8×8	8×8	16×16	8×16	8×16
8×16	8×8	8×8	8×16	8×16	8×8	16×16	8×16	8×16
8×16	8×16	8×16	8×8	8×8	8×8	16×16	8×16	8×16
8×8	8×8	8×16	8×16	8×16				
8	8	8	8×16	8×8	8×8	8×16	8×16	8×16
			16×8	8×16	8×8	16×16	8×16	8×8
			16	16	16	8×16	8×16	8×8
						8×8	8×8	8×8
						16×8	8×8	8×8
						16	16	$\overline{16}$

Comparison and Energy Savings

Conclusion

Dynamic Energy Accuracy Scaling

- Allows to weigh the importance of accuracy vs energy depending on application/context
- Especially interesting when retraining is not an option

Future works

- Combination of two techniques
- Question?

Dyn. Bit-width Reconfig. Results (2)

Comparison with other input-dependent strategies (on CaffeNet):

Method	Energy Saving	Top-1 Drop	Multiple CNNs	Multiple Trainings
Park et al, CODES2015	53.7%	0.9%	Yes	Yes
Tann et al, CODES2016	32.61%	0.29%	No	Yes
This work	49.2%	0.89%	Νο	Νο

• Warning: different underlying hardware!

HW energy model

Computation Energy

Memory Energy

Simulated Annealing

Algorithm 2: Simulated Annealing

```
Input: T_0, T_f, X_0, cooling, K_b, iter, \lambda_{max}, valset
   Output: X
1 T = T_0
2 E = energy(X_0)
3 E_{max} = energy (ones (2L + 1)); E_{min} = energy (zeros (2L + 1))
4 while (T \ge T_f) do
         for i = 0; i < iter; i = i+1 do
5
               next_state = move (current_state)
 6
               if accuracy_drop(next_state, valset, tested) < \lambda_{max} then
7
                     E_next = energy (next_state)
 8
                     \Delta E = (E_{\text{next-}E_{\text{current}}}) / (E_{\text{max}} - E_{\text{min}})
9
                     if (dE < 0) or (exp[-\Delta E/K_b \cdot T] > random(0, 1)) then
10
                           current_state = next_state
11
                           E current = E new
12
                           if E_{current} < E_{best} then
13
                                 E_best = E_current
14
                                 best_state = current_state
15
                           end
16
               update(tested)
17
         end
18
         T = T \cdot cooling
19
20 end
21 return best_state
```