
IWES 2018

Third Italian Workshop on Embedded Systems

Siena – 13-14 September 2018

An FPGA-Based Scalable Hardware Scheduler
For Data-Flow Models

Roberto Giorgi, Marco Procaccini, Farnam Khalili
University of Siena, Italy

The end of Dennard scaling…

Engineering community forced to find new solutions to improve
performance with a limited power budget by [1]

 Stop increasing clock frequency
 Shifting to multicore processors

Programming limitations to exploit full performance still remains…

Moore’s law 2018 – Source: Wikipedia

The “DF-Threads” Data-Flow execution model

The “DF-Threads” Data-Flow execution model is capable of taking
advantage of the full parallelism offered by multicore systems[2][3][4][5][6][7]

 Execution relies on data-dependencies
 Parallel execution of data independent paths

Hybrid Data-Flow Model

DF-Threads based execution does not need to totally replace the
conventional general purpose processors (GPP)

Hybrid Model based on GPP and Field Programmable Gate Arrays
(FPGA)

 GPP cores are suitable for legacy or OS
 FPGA can easily provide an efficient parallel execution via DF-Threads

System Design

A possible architecture to enable an easy distribution of the Data-Flow
Threads (DF-Threads) among multiple core and multiple nodes [8]

The Idea

Improving the execution of the Data-Flow Threads scheduling, by
implementing an Hardware Scheduler (HS) on FPGA [9][10]

The GPP: The HS
 Asynchronous APIs
 Schedule DF-Threads
 Execute DF-Threads

 Retrieves meta-information
 Provides ready HDF-Threads
 Distribute HDF-Threads on network

HS: hardware scheduler
HS-L1: local scheduler
HS-L2: distributed scheduler

PS: processing system
GPPs: general purpose processors
HDF: hardware Data-Flow Threads

Compilation and testing flow

Testing Environment

 COTSon Simulator [11]

 AXIOM Board [12]

System Abstraction in a Perspective

PL (Programmable Logic)

PS (Processing System)

HS Device
Driver

NIC Device
Driver

Axiom IOCTLs

HS Registers

AXI buses

Axiom Library
[2]

HS API

Application: Fibonacci
Algorithm

Routing topologies: 2d-mesh or ring

Registers PS

NIC
PL

Proposed Hardware Scheduler

NIC

[2] Evidence Embedding Technology, 2017, “https://github.com/evidence

[1] Vasileios Amourgianos-Lorentzos. “Efficient network interface design for low cost distributed systems”
Master Thesis, 2017 at Technical University of Crete as part of the FORTH Axiom program.

HS

DDR

DDR

PS

NIC
PL
HS

DDR

Memory

[1]HS

Hardware Scheduler (HS) Primitives

PS (Processing System)

PL (Programmable Logic)

HS API
f_ptr = load_frame();

HDF_decrease (f_ptr, num_sc)
HDF_subscribe (d_ptr)
HDF_publish (f_ptr)

HFD_schedule(f_ptr, i_ptr, init_sc) Register
Controller

[1]

Opcode Register

Argument 1
Register

Argument 2
Register

[1] F. Khalili, M. Procaccini and R. Giorgi. “Reconfigurable logic interface architecture for cpu-fpga accelerators.“
In HiPEAC ACACES-2018, pp. 1,4. Fiuggi, Italy, July 2018. Poster.

HS-L1

HS-L2
HS Module

NIC

DDR Memory

Memory
Controller

Network Interface Card

Hardware Scheduler Level 2

Hardware Scheduler Level 1

Decoder
FSM

Register Controller [2]

[2] F. Khalili, M. Procaccini and R. Giorgi. “Recongurable logic interface architecture for cpu-fpga accelerators.“
In HiPEAC ACACES-2018, pp. 1{4. Fiuggi, Italy, Julyy 2018. Poster.

 The Write/Read access of each registers are separately controllable through the ‘Control’ register.

 The Register Controller FSM (1) is responsible to control Master AXI Stream Handler Module (2) and
exchange data between AXI Stream and AXI memory mapped Domains.

 Register Controller FSM (1) also polls control_reg (3) and checks corresponding bit fields of each register
if it is configured as write access or read access to set the direction of the data.

HS-L1 (Hardware Scheduler Level 1)

 Retrieves meta-information of FRAMEs (Schedule FSM)
 Schedules the FRAMEs which are ready to be executed (Decrease FSM).
 Fetches the IP (Instruction Pointer) from the ready FRAMEs (Fetch FSM)

GM-DMAGM-ctrler

RFQ-DMA

Global Memory – Direct
Memory Access

GM
Sector

RFQ
Sector

Memory

Ready Frame Queue –
Direct Memory Access

Frames are stored
in GM Sector

Ready Frame
Pointers are
stored in RFQ
Sector

RFQ-ctrler

Schedule
FSM

Decrease
FSM

Fetch FSM

Decoder
FSM

HS-L2

HS-L2 (Hardware Scheduler Level 2)

Msg-
ComposerHS-L1

 Distribute FRAMEs in order to balance the loads throughout the network.
 Work-stealing from remote nodes.
 Off-load the works to remote nodes

TX-FIFO

RX-FIFOMsg-
Interpreter

Load
Balancing

FSM

N

NIC
W
S
E

Design Snippets

Register Controller

Schedule FSM

Decrease FSM

Fetch FSM
RFQ Controller

GM Controller
GM DMA

RFQ DMA

Msg-Interpreter

Msg-Composer

RX - FIFO

TX - FIFO

Evaluation – Execution Cycles

FIFO Enqueue/Dequeue 64 bits 2 1

Global Memory Write (DDR4) 16 bytes 48 40

Global Memory Read (DDR4) 16 bytes 38 38

Ready Queue Write 32 bits 48 40

Ready Queue Read 32 bits 44 44

Operation Data Width
Number Of Clock Cycles (PL).

Worst Best

HDF-Schedule
Total 49 40
DMA IP 48 39

Decoder FSM 1 1

HDF-Decrease
Total 89 43
DMA IP 86 40

Decoder FSM 3 3

HDF-Fetch
Total 85 34
DMA IP 82 31

Fetch FSM 3 3

Instruction Name Delay Contributors
Number of Clock Cycles (PL).

Worst Best

Evaluation – Resource Utilization

LUT 20357 274080 7.43

LUTRAM 2876 144000 2.00

FF 26116 548160 4.76

BRAM 49.50 912 5.43

IO 27 204 13.24

GT 2 16 12.50

BUFG 6 404 1.49

PL Units Number of Units Available Utilization %

 Extracted resource utilization from Vivavo Design Suit 2016.4.
• Axiom board Zynq UltraScale+ XCZU9EG platform.

Execution Time

0

2

4

6

8

10

12

14

1N 1C 2N 1C 4N 1C 4N 2C

Ex
de

cu
tio

n
Ti

m
e

(s
ec

)

OpenMPI HDF-Threads

Results

HDF-Threads vs OpenMPI – Matrix Multiply Test 512+8

Speedup Efficiency

0

1

2

3

4

5

6

7

8

9

10

2N 1C 4N 1C 4N 2C

Sp
ee

du
p

T(
1)

/T
(n

)

OpenMPI HDF-Threads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2N 1C 4N 1C 4N 2C

Ef
fic

ie
nc

y S
(p

)/
p

OpenMPI HDF-Threads

Results

HDF-Threads vs OpenMPI – Matrix Multiply Test

39.75 42.56

52.03
58.73

0.79 2.6 2.52 2.42
0

10

20

30

40

50

60

70

1N 1C 2N 1C 4N 1C 4N 2C

%
 K

er
ne

l C
yc

le
s

OpenMPI HDF-Threads

1.97
2.17 2.26

2.01

1.07 1.07 1.08

1.4

0

0.5

1

1.5

2

2.5

1N 1C 2N 1C 4N 1C 4N 2C
B

us
 U

til
iz

at
io

n
OpenMPI HDF-Threads

Kernel Cycles Bus Utilization

size=512, b=8 size=512, b=8

References

[1] Frank, D. J., Dennard, R. H., Nowak, E., Solomon, P. M., Taur, Y., & Wong, H. S. P. (2001). Device scaling limits of Si MOSFETs and
their application dependencies. Proceedings of the IEEE, 89(3), 259-288.

[2] Mondelli, Andrea, et al. "Dataflow support in x86_64 multicore architectures through small hardware extensions." Digital System
Design (DSD), 2015 Euromicro Conference on. IEEE, 2015

[3] Dennis, J. B. (1980). Data flow supercomputers. Computer, (11), 48-56.

[4] Giorgi, R., & Faraboschi, P. (2014, October). An introduction to DF-Threads and their execution model. In Computer Architecture
and High Performance Computing Workshop (SBAC-PADW), 2014 International Symposium on (pp. 60-65). IEEE.

[5] Verdoscia, L., Vaccaro, R., & Giorgi, R. (2014, August). A clockless computing system based on the static dataflow paradigm.
In Data-Flow Execution Models for Extreme Scale Computing (DFM), 2014 Fourth Workshop on (pp. 30-37). IEEE.

[6] Giorgi, R., Popovic, Z., & Puzovic, N. (2007, October). DTA-C: A decoupled multi-threaded architecture for CMP systems. In Computer Architecture
and High Performance Computing, 2007. SBAC-PAD 2007. 19th International Symposium on (pp. 263-270). IEEE.

[7] Kavi, K. M., Giorgi, R., & Arul, J. (2001). Scheduled dataflow: Execution paradigm, architecture, and performance evaluation. IEEE
Transactions on Computers, 50(8), 834-846.

[8] Procaccini, M., Giorgi, R. (2017). A Data-Flow Execution Engine for Scalable Embedded Computing. HiPEAC ACACES-2018.

[9] Procaccini, M., Khalili, F., Giorgi, R. (2018). An FPGA-based Scalable Hardware Scheduler for Data-Flow Models. HiPEAC ACACES-
2018.

[10] Khalili, F., Procaccini, M., Giorgi, R. (2018). Reconfigurable Logic Interface Architecture for CPU-FPGA Accelerators. HiPEAC
ACACES-2018.

[11] Argollo, E., Falcón, A., Faraboschi, P., Monchiero, M., & Ortega, D. (2009). COTSon: infrastructure for full system simulation. ACM SIGOPS
Operating Systems Review, 43(1), 52-61.

[12] Theodoropoulos, D., Mazumdar, S., Ayguade, E., Bettin, N., Bueno, J., Ermini, S., ... & Montefoschi, F. (2017). The AXIOM platform
for next-generation cyber physical systems. Microprocessors and Microsystems, 52, 540-555.

THANK
YOU FOR

YOUR
ATTENTION

ANY
QUESTIONS

?

