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The end of Dennard scaling…

Engineering community forced to find new solutions to improve 
performance with a limited power budget by [1]

 Stop increasing clock frequency
 Shifting to multicore processors

Programming limitations to exploit full performance still remains…

Moore’s law 2018 – Source: Wikipedia



The “DF-Threads” Data-Flow execution model 

The “DF-Threads” Data-Flow execution model is capable of taking 
advantage of the full parallelism offered by multicore systems[2][3][4][5][6][7]

 Execution relies on data-dependencies
 Parallel execution of data independent paths



Hybrid Data-Flow Model

DF-Threads based execution does not need to totally replace the 
conventional general purpose processors (GPP) 

Hybrid Model based on GPP and Field Programmable Gate Arrays 
(FPGA)

 GPP cores are suitable for legacy or OS
 FPGA can easily provide an efficient parallel execution via DF-Threads



System Design 

A possible architecture to enable an easy distribution of the Data-Flow 
Threads (DF-Threads) among multiple core and multiple nodes [8] 



The Idea

Improving the execution of the Data-Flow Threads scheduling, by 
implementing an Hardware Scheduler (HS) on FPGA [9][10]

The GPP: The HS 
 Asynchronous APIs
 Schedule DF-Threads
 Execute DF-Threads

 Retrieves meta-information
 Provides ready HDF-Threads
 Distribute HDF-Threads on network

HS: hardware scheduler
HS-L1: local scheduler
HS-L2: distributed scheduler

PS: processing system 
GPPs: general purpose processors
HDF: hardware Data-Flow Threads



Compilation and testing flow

Testing Environment

 COTSon Simulator [11]

 AXIOM Board [12]



System Abstraction in a Perspective

PL (Programmable Logic)

PS (Processing System)

HS Device 
Driver

NIC Device 
Driver

Axiom IOCTLs

HS Registers

AXI buses

Axiom Library 
[2]

HS API 

Application: Fibonacci 
Algorithm

Routing topologies: 2d-mesh or ring 

Registers PS

NIC
PL

Proposed Hardware Scheduler

NIC

[2] Evidence Embedding Technology, 2017, “https://github.com/evidence

[1] Vasileios Amourgianos-Lorentzos. “Efficient network interface design for low cost distributed systems” 
Master Thesis, 2017 at Technical University of Crete as part of the FORTH Axiom program. 

HS

DDR

DDR

PS

NIC
PL
HS

DDR

Memory

[1]HS



Hardware Scheduler (HS) Primitives 

PS (Processing System)

PL (Programmable Logic)

HS API 
f_ptr = load_frame(); 

HDF_decrease (f_ptr, num_sc)
HDF_subscribe (d_ptr)
HDF_publish (f_ptr)

HFD_schedule(f_ptr, i_ptr, init_sc) Register 
Controller

[1]

Opcode Register

Argument 1 
Register

Argument 2 
Register

[1] F. Khalili, M. Procaccini and R. Giorgi. “Reconfigurable logic interface architecture for cpu-fpga accelerators.“
In HiPEAC ACACES-2018, pp. 1,4. Fiuggi, Italy, July 2018. Poster.

HS-L1 

HS-L2
HS Module 

NIC

DDR Memory

Memory
Controller

Network Interface Card

Hardware Scheduler Level 2

Hardware Scheduler Level 1

Decoder
FSM



Register Controller [2]

[2] F. Khalili, M. Procaccini and R. Giorgi. “Recongurable logic interface architecture for cpu-fpga accelerators.“
In HiPEAC ACACES-2018, pp. 1{4. Fiuggi, Italy, Julyy 2018. Poster.

 The Write/Read access of each registers are separately controllable through the ‘Control’ register. 

 The Register Controller FSM (1) is responsible to control Master AXI Stream Handler Module (2) and 
exchange data between AXI Stream and AXI memory mapped Domains. 

 Register Controller FSM (1) also polls control_reg (3) and checks corresponding bit fields of each register 
if it is configured as write access or read access to set the direction of the data.



HS-L1 (Hardware Scheduler Level 1) 

 Retrieves meta-information of FRAMEs (Schedule FSM) 
 Schedules the FRAMEs which are ready to be executed (Decrease FSM). 
 Fetches the IP (Instruction Pointer) from the ready FRAMEs (Fetch FSM)

GM-DMAGM-ctrler

RFQ-DMA

Global Memory – Direct 
Memory Access

GM 
Sector

RFQ 
Sector

Memory

Ready Frame Queue –
Direct Memory Access

Frames are stored
in GM Sector 

Ready Frame 
Pointers are 
stored in RFQ 
Sector

RFQ-ctrler

Schedule 
FSM

Decrease 
FSM

Fetch FSM

Decoder 
FSM

HS-L2



HS-L2 (Hardware Scheduler Level 2) 

Msg-
ComposerHS-L1

 Distribute FRAMEs in order to balance the loads throughout the network.
 Work-stealing from remote nodes. 
 Off-load the works to remote nodes 

TX-FIFO

RX-FIFOMsg-
Interpreter

Load 
Balancing 

FSM

N

NIC
W
S
E



Design Snippets 

Register Controller 

Schedule FSM 

Decrease FSM 

Fetch FSM
RFQ Controller 

GM Controller 
GM DMA

RFQ DMA

Msg-Interpreter 

Msg-Composer 

RX - FIFO

TX - FIFO



Evaluation – Execution Cycles

FIFO Enqueue/Dequeue 64 bits 2  1

Global Memory Write (DDR4) 16 bytes 48 40

Global Memory Read (DDR4) 16 bytes 38 38

Ready Queue Write 32 bits 48 40

Ready Queue Read 32 bits 44 44

Operation Data Width 
Number Of Clock Cycles (PL).

Worst Best

HDF-Schedule
Total 49 40
DMA IP 48 39

Decoder FSM 1 1

HDF-Decrease
Total 89 43
DMA IP 86 40

Decoder FSM 3 3

HDF-Fetch
Total 85 34
DMA IP 82 31

Fetch FSM 3 3

Instruction Name Delay Contributors
Number of Clock Cycles (PL). 

Worst Best



Evaluation – Resource Utilization

LUT 20357 274080 7.43

LUTRAM 2876 144000 2.00

FF 26116 548160 4.76

BRAM 49.50 912 5.43

IO 27 204 13.24

GT 2 16 12.50

BUFG 6 404 1.49

PL Units Number of Units Available Utilization %

 Extracted resource utilization from Vivavo Design Suit 2016.4.
• Axiom board Zynq UltraScale+ XCZU9EG platform.  



Execution Time
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Results

HDF-Threads vs OpenMPI – Matrix Multiply Test
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