
1

2

Summary of

open-source licenses

Claudio Scordino

Paolo Gai

IWES, September 2018

3

Why open-sourcing ?

1. Code doesn't need to be written from scratch

• Code from similar open-source applications can be reused

2. Free help and support from a development community

3. Positive image of the company

• E.g. Google

• Easier to hire talented developers

4. Better code:

• Developers encouraged to write better code

• Free code review by a high number of developers

4

Background: possible freedoms

• to use a software

• Commercial (e.g. Windows)

• to distribute a software

• Shareware/Freeware (e.g. WinZip)

• to modify and distribute a software w/out releasing source

• BSD/MIT licenses (e.g. FreeBSD)

• to modify and distribute a software by releasing source

• GPL licenses (e.g. Linux)

• Common misconception: the modified code must be provided only to the

"final recipient" (i.e. people receiving the binaries in whatever form).

And only at their request.

• Original authors keep IP rights and can re-license the provided code

5

Background: selling software

• Most open-source licenses allow to sell the software

• Even Microsoft allows access to some source code by

subscription

• The point is more about access to knowledge than to

gratuitousness

Open-source ≠ free (as in "free beer")

6

BSD/MIT

• Families of licenses

• Permissions/constraints:

• Use/modify/distribute the binaries

• Modified/linked code doesn't become BSD/MIT

• No need to disclose the source code

• Must acknowledge the original authors

• Most permissive licenses

• "Industry-friendly": existing code can be re-used without disclosing

our own source code

• No "pollution" as the license doesn't affect other code, even in case

of inclusion or linking

• Examples: FreeBSD, FreeRTOS

7

Summary of BSD/MIT

BSD

library
Proprietary

object

Proprietary

source

BSD

source

C compiler

Linker

Proprietary

binary

Inclusion of BSD source code:

• Proprietary code never becomes BSD/MIT:

Linking of a BSD library:

Proprietary

binary

Proprietary

object

Proprietary

source

C compiler

Linker

8

GNU General Public License (GPL)

• Published by the Free Software Foundation

• Permissions/constraints:

• Use/modify/distribute the binaries as long as the recipient has

access to the source code and maintains the same rights

• Modified/linked code becomes GPL

• "Pollution": changes are and remain under GPL

• GPL code cannot be used in/linked with non-GPL code

• Examples: Linux kernel, Jailhouse hypervisor

9

GNU General Public License (GPL)

GPL

library
GPL

object

Proprietary

source

GPL

source

C compiler

Linker

GPL

binary

Inclusion of GPL source code:

• Proprietary code becomes GPL if:

• It includes a portion of GPL source code

• It is linked againsy a GPL license

Linking of a GPL library:

GPL

binary

Proprietary

object

Proprietary

source

C compiler

Linker

10

GPL version 3

• Version 3 of GPL added some extra restictions:

• Patent protection: grants to recipients all patents needed for

using/distributing the GPL software

• No hardware-based lockdown mechanisms ("tivoization") can be

implemented for preventing the user running a modified version of

the GPL code.

Unacceptable by most embedded manufacturers.

• Cracking Digital Rights Management (DRM) included in GPL code

is legal and cracked code can be redistributed

11

Linux and user-space

• On Linux, kernel and user-space applications are not

linked (either at run-time)

• Syscalls allow applications to invoke kernel services

• Therefore, the kernel's GPL license doesn't affect the user-space.

• Different for embedded RTOSs:

• Typically, the application code is linked against the RTOS

• If the RTOS is under GPL, then the application code becomes GPL

and must be released.

12

Linux and modules (an exception ?)

• Linux allows to implement Loadable Kernel Modules (LKM)

• These modules are linked to the kernel at run-time

• Grey area: non-GPL modules are tolerated, however

• They can't access all services provided by the kernel (some are

available only to GPL modules)

• When loading a non-GPL module, the kernel is marked as "tainted"

13

GNU Lesser General Public License (LGPL)

• Published by the Free Software Foundation

• Permissions/constraints:

• Use/modify/distribute the binaries as long as the recipient has

access to the source code and maintains the same rights

• Modified code becomes LGPL

• Use of LGPL libraries with proprietary code is permitted.

However it must be possible to link the program against a newer

version of the LGPL library (i.e. forces dynamic linking)

• Examples: Qt, GLIBC

14

GNU Lesser General Public License (LGPL)

GPL

library
GPL

object

Proprietary

source

GPL

source

C compiler

Linker

GPL

binary

Inclusion of GPL source code:

• Proprietary code becomes LGPL if:

• It includes a portion of LGPL source code

Linking of a GPL library:

Proprietary

object

Proprietary

source

C compiler

Proprietary

binary

Linker

15

GPL with Linking Exception

• Also known as "Classpath"

• It is the GPL with an execption allowing linking between

proprietary code and GPL code

• More permissive than LGPL: no need to allow linking to

newer/modified versions of the LGPL library

• Examples: ERIKA version 2

16

Summary

Inclusion of

proprietary

code

Linking of

proprietary

objects

Notes

BSD

MIT
Need to acknowledge the original authors.

GPL

LGPL
Only dynamic linking (allows to relink to a

newer version of the LGPL library).

GPL with

Link.

Except.

17

Contacts

Evidence Srl

Via Carducci 56

56010 S.Giuliano Terme

Pisa - Italy

Web: http://www.evidence.eu.com

E-mail: info@evidence.eu.com

Phone: +39 050 99 11 122

