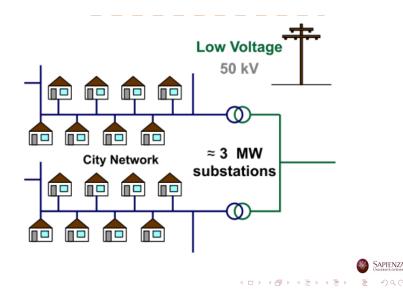
Motivations & Contributions	Problem Statement	Algorithm Sketch	Experimental Results 0000	Conclusions 00

Parallel Statistical Model Checking for Safety Verification in Smart Grids

Enrico Tronci

joint work with Toni Mancini, Federico Mari, Igor Melatti, Ivano Salvo, Jorn Klaas


Gruber, Barry Hayes, Milan Prodanovic, Lars Elmegaard

IWES 2018 - University of Siena

Motivations & Contributions	Problem Statement	Algorithm Sketch	Experimental Results	Conclusions
0000				

Electric Distribution Network: Substations and Houses

Motivations & Contributions ○●○○	Problem Statement	Algorithm Sketch 000	Experimental Results 0000	Conclusions

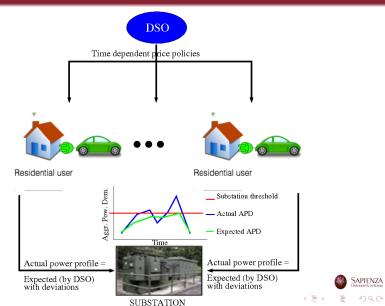
Autonomous Demand Response

- Distribution System Operators (DSOs) compute price tariffs for residential users
- Expected Power Profiles (EPPs): how residential users will respond to price tariffs
- DSOs compute price tariffs so that EPPs do not threat substations safety
 - in each *t*, Aggregated Power Demand (APD) must be below the substation safety power threshold (e.g., 400 kW)

Motivations & Contributions	Problem Statement	Algorithm Sketch 000	Experimental Results 0000	Conclusions 00

Autonomous Demand Response

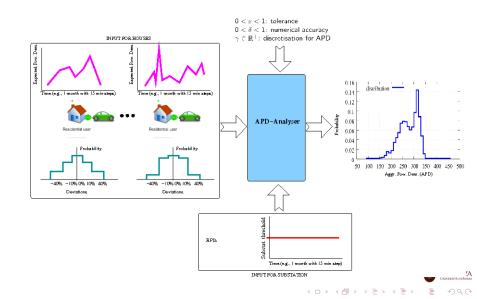
- Residential users may or may not follow their corresponding EPPs
 - there may be automatic tools to enforce EPPs
 - implemented on small devices on users premises
 - still, there is no guarantee, due to unexpected needs, bad forecasts, limited computational resources, etc.


Problem

Given that users may deviate from EPPs with a given probability distribution, what is the resulting probability distribution for the APD?

Motivations & Contributions	Problem Statement	Algorithm Sketch	Experimental Results	Conclusions 00

Problem at a Glance


Motivations & Contributions	Problem Statement ●0000	Algorithm Sketch	Experimental Results 0000	Conclusions
APD-Analyser				

- We present the APD-Analyser tool
- Main goal: compute the probability distribution for the APD
- So as to compute KPIs on it
 - probability distribution that a given substation threshold is exceeded
 - rank APD probability distributions according to their similarity to desired shapes

Motivations & Contributions	Problem Statement	Algorithm Sketch	Experimental Results	Conclusions
	0000			

APD-Analyser: Input and Output

Motivations & Contributions	Problem Statement 00●00	Algorithm Sketch 000	Experimental Results	Conclusions
APD-Analyser:	Input			

- $\bullet\,$ Set of residential users U connected to the same substation
- Period of time *T* (e.g., one month), divided in time-slots (e.g., 15 minutes)
- Expected Power Profiles (EPP)
 - one for each user $u \in U$: for each time-slot $t \in T$, the expected power demand of u in t
 - $p_u: T \to \mathbb{R}$
 - if $p_u(t) < 0$, production from PV panels exceeds consumption in time-slot t
- A probabilistic model for users deviations from EPPs
 - a real function $dev_u: D_u
 ightarrow [0,1]$, for each user $u \in U$
 - $\int_{D_u} dev_u(x) dx = 1$
 - $\int_{a}^{b} dev_{u}(x) dx = \text{probability that actual power demand of } u$ in any time-slot $t \in T$ is in $[(1+a)p_{u}(t), (1+b)p_{u}(t)]$

Motivations & Contributions	Problem Statement 000●0	Algorithm Sketch 000	Experimental Results 0000	Conclusions
APD-Analyser:	Input			

- Substation safety requirements
 - $p_s: T \to \mathbb{R}$
 - for each $t \in T$, DSO wants the APD to be below $p_s(t)$
 - that is, $orall t \in \mathcal{T} o \sum_{u \in U} p_u(t) \leq p_s(t)$
 - Key Performance Indicators (KPIs)
 - e.g., probability distribution that $p_s(t)$ is exceeded in any $t \in T$
 - Parameters
 - $0 < \delta, \varepsilon < 1$: as for output probability distributions, the values must be correct up to tolerance ε with statistical confidence δ
 - $\Pr[(1-\varepsilon)\mu \leq \tilde{\mu} \leq (1+\varepsilon)\mu] \geq 1-\delta$
 - μ : (unknown) correct value, $\tilde{\mu}$: computed value
 - $\gamma \in \mathbb{R}^+$: discretisation step for output probability distribution

Motivations & Contributions	Problem Statement 0000●	Algorithm Sketch 000	Experimental Results 0000	Conclusions
APD-Analyser:	Output			

- Probability distribution for APD resulting from EPPs disturbed with given probabilistic disturbance model
 - easy to evaluate KPIs once such distribution is computed
 - formally: Ψ(v, W) is the probability that APD takes a value in interval W in any time-slot t s.t. p_s(t) = v
- Exactly computing Ψ is infeasible, thus we compute $\tilde{\Psi}$ as a (ε,δ) approximation of a γ -discretisation of the APD
- For each γ -discretised value $w = APD_{min} + k\gamma$, and for $v \in p_s(T)$, we compute $\tilde{\Psi}(v, w)$ s.t., with confidence at least 1δ :

- if $\tilde{\Psi}(v,w) = \perp \notin [0,1]$ then $\Psi(v,[w,w+\gamma)) < \varepsilon$
- otherwise, $\Psi(v,[w,w+\gamma))$ is within $(1\pmarepsilon) ilde{\Psi}(v,w)$

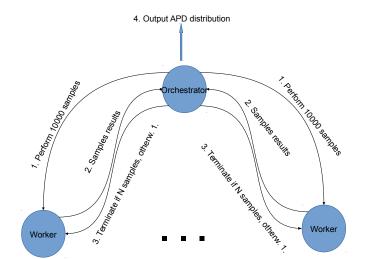
Motivations & Contributions	Problem Statement 00000	Algorithm Sketch ●00	Experimental Results 0000	Conclusions

APD-Analyser: Algorithm

- Monte-Carlo model checking
 - goal: estimate the mean of a 0/1 random variable $Z_{v,w}$
 - taken at random a t ∈ p_s⁻¹(v), is the value of the APD inside w, when perturbed using deviations model dev_u?
- Method: perform N independent experiments (samples) for $Z_{\nu,w}$, and then the mean is $\frac{\sum_{i=1}^{N} Z_i}{N}$
 - Optimal Approximation Algorithm (OAA) by Dagum & al. (2000) + Quantitative Model Checking (QMC) by Grosu & Smolka (2005)
 - the value of N is automatically adjusted, at run-time, while performing the samples
 - so that the desired tolerance ε is achieved with desired accuracy δ

Motivations & Contributions	Problem Statement	Algorithm Sketch ○●○	Experimental Results 0000	Conclusions

APD-Analyser: HPC Algorithm


- N can be prohibitively high
 - easily order of 10^9 in our experiments
 - if performed with a sequential algorithm, order of 1 month for the computation time
- We re-engineer the OAA to be run on a HPC infrastructure, i.e., a cluster
 - main obstacle: value of *N* depends on samples outcomes! To be computed at run-time
- One *orchestrator* node instructs *worker* nodes to perform given number of samples
 - worker nodes perform samples in parallel and send results to the orchestrator
 - the orchestrator is responsible for termination checking
 - that is: is current number of samples ok for desired $arepsilon,\delta?$
- As a result, less than 2 hours of computation

Motivations & Contributions	Problem Statement	Algorithm Sketch	Experimental Results	Conclusions
		000		

APD-Analyser: HPC Implementation Sketch

Steps 3-4: Monte-Carlo OAA (Dagum2000) and QMC (Grosu2005)

Motivations & Contributions	Problem Statement	Algorithm Sketch	Experimental Results ●000	Conclusions

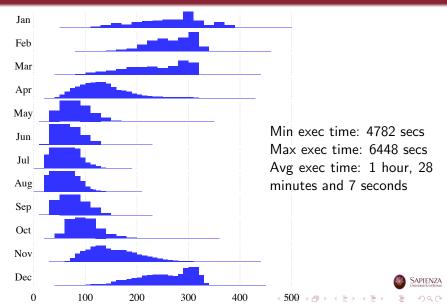
Experimental Evaluation: Case Study

- 130 houses in Denmark, all connected to the same substation
- EPPs computed by using methodologies from the literature
 - namely, computed as collaborative users which respond to individualised price policies
- Very liberal deviation model: up to $\pm40\%$ variations with 10% probability, up to $\pm20\%$ variations with 20% probability
- Challinging scenario: we want to compute the APD for each month of the year
 - by using time-slots of 1 day, we have $5^{30\times130}$ overall number of deviations

Motivations & Contributions	Problem Statement	Algorithm Sketch	Experimental Results	Conclusions
			0000	

Experimental Evaluation: Case Study

PERFORMED ONCE FOR EACH MONTH IN ONE YEAR $\varepsilon = \delta = 0.05$ $\gamma = 20 \mathrm{kW}$ INPUTFOR 130 HOUSES 7 Time (I month with I hour steps) Time (I month with I hoursteps) 130 APD-Analyser Residential user Residential user 0.4 Probability Probability 0.4 0.2 0.2 0.1 0.1 -40% -10% 0% 10% 40% -40% -10% 0% 10% 40% Deviations Deviations threshold 400 kW KPE: is the threshold violated? Substat. Time (1 month with 1 hour step) INPUT FOR SUBSTATION



÷.

■

Motivations & Contributions	Problem Statement	Algorithm Sketch 000	Experimental Results 00●0	Conclusions 00

Experimental Results

Motivations & Contributions

Problem Statemer

Algorithm Sketch

Experimental Results

Conclusions

Experimental Results: HPC Scalability

# workers	samples/sec	speedup	efficiency
1	5924.89	$1 \times$	100%
20	79275.028	$13.38 \times$	66.90%
40	162578.98	$27.44 \times$	68.60%
60	257791.96	$43.51 \times$	72.52%
80	335823.24	$56.68 \times$	70.85%

Motivations & Contributions	Problem Statement	Algorithm Sketch 000	Experimental Results 0000	Conclusions ●0
Conclusions				

- We presented the HPC-based tool APD-Analyser
- Main purpose: support DSOs in analysing effects of price policies on aggregated power demand (APD) at substation level
 - especially for highly-fluctuating and individualised price policies

- From expected power profiles disturbed by probabilistic deviations (input) to probability distribution for APD (output)
- As a result, APD-Analyser enables safety assessment of price policies in highly dynamic ADR schemas

Motivations & Contributions	Problem Statement	Algorithm Sketch 000	Experimental Results 0000	Conclusions ○●

Thanks!

