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Approximate Computing is an increasingly popular approach to
achieve large performance and energy improvements in error-tolerant
applications [1, 7]. This class of techniques aims at trading off
computation accuracy for performance and energy.

In particular, among such approximate computing techniques,
precision tuning trades off the accuracy of arithmetic operations for
performance and energy by employing less precise data types. For
example, fixed point is used instead of floating point, or standard
32-bit floating point numbers are replaced with, e.g., bfloat16 [6].

Precision tuning is primarily employed in the field of embedded
systems, and in general in environments where it is necessary to
achieve high performance with limited resources. However, per-
forming precision tuning manually is a non-trivial, error-prone and
tedious task, especially when large code bases are involved. To
alleviate programmer load, significant research efforts have been
spent over the last years to build compiler-based tools to fully or
partially automatize this process [3].

However, the current state-of-the-art does not consider the pos-
sibility of optimizing mathematical functions whose computation
is usually off-loaded to a library. To address this limitation, we
extended the TAFFO [5, 4] precision-tuning framework to perform
tuning of trigonometric functions as well. We developed a new
mathematical function library, which is parameterizable at compile-
time depending on the data type, and works natively in the fixed
point numeric representation [2]. The parameterized implementa-
tions of these functions are then seamlessly inserted by a compiler
pass into the program during the precision tuning process.
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Figure 1: TAFFO workflow with FIXM and key speedup results
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We were able to achieve speedups up to approximately 180%
on a microcontroller-based embedded system in benchmarks where
trigonometric functions represent the majority of the computational
effort, with a negligible cost in terms of error. As a result, we
achieved energy savings up to 60%. Previous state-of-the-art float-
ing to fixed-point tools are not able to reap any advantages.

We demonstrated our approach on the two most common trigono-
metric functions, sin and cos, but it is easily extended to the rest of
trigonometric functions and then to hyperbolic functions. Future
developments include the implementation of these additional func-
tions, as well as an exploration of different architectural platforms
and of alternative computation algorithms.

The integration of FIXM with High Level Synthesis toolchains
would also benefit FPGA implementations of algorithms that use
trigonometric functions.
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