
Improving the Code Generation of Fixed Point
Mathematical Functions with FixM

Daniele Cattaneo*, Michele Chiari*, Gabriele Magnani*, Nicola Fossati*,
Stefano Cherubin†, Giovanni Agosta*

*DEIB – Politecnico di Milano, Milano, Italy,
†Codeplay Software Limited, Edinburgh, UK

Approximate Computing is an increasingly popular approach to
achieve large performance and energy improvements in error-tolerant
applications [1, 7]. This class of techniques aims at trading off
computation accuracy for performance and energy.

In particular, among such approximate computing techniques,
precision tuning trades off the accuracy of arithmetic operations for
performance and energy by employing less precise data types. For
example, fixed point is used instead of floating point, or standard
32-bit floating point numbers are replaced with, e.g., bfloat16 [6].

Precision tuning is primarily employed in the field of embedded
systems, and in general in environments where it is necessary to
achieve high performance with limited resources. However, per-
forming precision tuning manually is a non-trivial, error-prone and
tedious task, especially when large code bases are involved. To
alleviate programmer load, significant research efforts have been
spent over the last years to build compiler-based tools to fully or
partially automatize this process [3].

However, the current state-of-the-art does not consider the pos-
sibility of optimizing mathematical functions whose computation
is usually off-loaded to a library. To address this limitation, we
extended the TAFFO [5, 4] precision-tuning framework to perform
tuning of trigonometric functions as well. We developed a new
mathematical function library, which is parameterizable at compile-
time depending on the data type, and works natively in the fixed
point numeric representation [2]. The parameterized implementa-
tions of these functions are then seamlessly inserted by a compiler
pass into the program during the precision tuning process.

FFT -O3

FFT -Osize

Inverse
K2J -O3

Inverse
K2J -Osize

FFT -O3

FFT -Osize

Inverse
K2J -O3

Inverse
K2J -Osize

0

50

100

150

Sp
ee

du
p

(%
)

SPE E DUP

M4
M3

Annotation
propagation

Value Range
Analysis

Data Type
Allocation

Code
Conversion

Feedback 
Estimation

FixMAGE

NO FixM FixM

Figure 1: TAFFO workflow with FIXM and key speedup results

Submitted to IWES 2020

We were able to achieve speedups up to approximately 180%
on a microcontroller-based embedded system in benchmarks where
trigonometric functions represent the majority of the computational
effort, with a negligible cost in terms of error. As a result, we
achieved energy savings up to 60%. Previous state-of-the-art float-
ing to fixed-point tools are not able to reap any advantages.

We demonstrated our approach on the two most common trigono-
metric functions, sin and cos, but it is easily extended to the rest of
trigonometric functions and then to hyperbolic functions. Future
developments include the implementation of these additional func-
tions, as well as an exploration of different architectural platforms
and of alternative computation algorithms.

The integration of FIXM with High Level Synthesis toolchains
would also benefit FPGA implementations of algorithms that use
trigonometric functions.

1. REFERENCES
[1] A. Agrawal et al. Approximate computing: Challenges and

opportunities. In 2016 IEEE International Conference on
Rebooting Computing (ICRC), pages 1–8, 2016.

[2] Daniele Cattaneo, Michele Chiari, Gabriele Magnani, Nicola
Fossati, Stefano Cherubin, and Giovanni Agosta. Fixm: Code
generation of fixed point mathematical functions. Sustainable
Computing: Informatics and Systems, 29:100478, 2021.

[3] Stefano Cherubin and Giovanni Agosta. Tools for reduced
precision computation: a survey. ACM Computing Surveys,
53(2), Apr 2020.

[4] Stefano Cherubin, Daniele Cattaneo, Michele Chiari, and
Giovanni Agosta. Dynamic precision autotuning with taffo.
ACM Trans. Archit. Code Optim., 17(2), May 2020.

[5] Stefano Cherubin, Daniele Cattaneo, Michele Chiari, Antonio
Di Bello, and Giovanni Agosta. TAFFO: Tuning assistant for
floating to fixed point optimization. IEEE Embedded Syst.
Lett., 12(1):5–8, 2019.

[6] IEEE Computer Society Standards Committee. Floating-Point
Working group of the Microprocessor Standards
Subcommittee. Ieee standard for floating-point arithmetic.
IEEE Std 754-2008, pages 1–70, Aug 2008.

[7] Stanley-Marbell et al. Exploiting errors for efficiency: A
survey from circuits to applications. ACM Computing Surveys,
53(3), June 2020.


	References

