
Information Processing Letters 122 (2017) 8–16
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On minimising the maximum expected verification time

Toni Mancini, Federico Mari, Annalisa Massini ∗, Igor Melatti, Ivano Salvo,
Enrico Tronci ∗

Computer Science Department, Sapienza University of Rome, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 February 2016
Received in revised form 2 November 2016
Accepted 1 February 2017
Available online 4 February 2017
Communicated by Krishnendu Chatterjee

Keywords:
Formal verification
Explicit model checking
System-level formal verification
Formal methods
Software engineering

Cyber Physical Systems (CPSs) consist of hardware and software components. To verify
that the whole (i.e., software + hardware) system meets the given specifications, exhaustive
simulation-based approaches (Hardware In the Loop Simulation, HILS) can be effectively
used by first generating all relevant simulation scenarios (i.e., sequences of disturbances)
and then actually simulating all of them (verification phase). When considering the whole
verification activity, we see that the above mentioned verification phase is repeated
until no error is found. Accordingly, in order to minimise the time taken by the whole
verification activity, in each verification phase we should, ideally, start by simulating
scenarios witnessing errors (counterexamples). Of course, to know beforehand the set of
such scenarios is not feasible. In this paper we show how to select scenarios so as to
minimise the Worst Case Expected Verification Time.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

A CPS consists of hardware (e.g., engines, electrical cir-
cuits, etc.) and software components. Thus, in order to
verify a CPS design, we need methods and tools that can
model and effectively support analysis of hardware as well
as software components.

From a formal point of view, CPS can be modelled as
hybrid systems (see, e.g., [8,32,31] and citations thereof).
Many Model-Based Design software tools offer support for
modelling and simulation of CPSs. Well known examples
are Simulink, VisSim, Open Modelica, JModelica, Dymola.
All such tools take as input a (mathematical) model of the
behaviour of the CPS along with a simulation scenario and
provide as output the time evolution (trace or simulation
run) of the system.

System Level Verification of CPSs aims at verifying that
the whole (i.e., software + hardware) system meets the

* Corresponding authors.
E-mail address: massini@di.uniroma1.it (A. Massini).
http://dx.doi.org/10.1016/j.ipl.2017.02.001
0020-0190/© 2017 Elsevier B.V. All rights reserved.
given specifications. System Level Formal Verification (SLFV)
has the goal of exhaustively verifying that the above holds
for all possible operational scenarios.

For digital circuits, formal verification is usually car-
ried out using symbolic model checking techniques (see,
e.g., [13,12]). Unfortunately, model checkers for hybrid sys-
tems cannot handle SLFV of real world CPSs because of
state explosion. Thus, HILS is currently the main workhorse
for system-level verification of CPSs, and is supported by
model-based design tools.

In HILS, the control software (see, e.g., [30,4,5]) reads/
sends values from/to mathematical models (simulation) of
the physical systems (e.g., mechanical or electrical sys-
tems) it will be interacting with. Simulation can be very
time consuming. Accordingly, in order to reduce sys-
tem design time, there are tools providing modelling and
simulation software along with FPGA-based hardware to
support real-time simulation. Examples are Opal-RT and
dSpace.

Finally, model-based design of CPSs often refers to the
activity of synthesising control software from system re-

http://dx.doi.org/10.1016/j.ipl.2017.02.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:massini@di.uniroma1.it
http://dx.doi.org/10.1016/j.ipl.2017.02.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.02.001&domain=pdf

T. Mancini et al. / Information Processing Letters 122 (2017) 8–16 9
quirements (see, e.g., [7,6] and citations thereof). Here,
instead, we assume that a model for the whole system
(software + hardware) is given, and we are only interested
in CPS SLFV.

1.1. Motivations

Simulation-based approaches to the analysis of hybrid
systems have been proven very effective in application do-
mains as diverse as CPSs (see, e.g., [24,28,17,11,41,1,42]),
smart grids (see, e.g., [40,29,20]) and biological systems
(see, e.g., [22,38]). The goal of all such approaches is to
show that, notwithstanding the possible presence of dis-
turbances (i.e., uncontrollable events such as faults, vari-
ations in system parameters, etc.) from the environment,
the system meets its requirements. This is done by using
HILS to show that for all simulation scenarios (i.e., time se-
quences of disturbances) in a given set, the system meets
its requirements. HILS, in turn, is carried out using a sim-
ulator (e.g., Simulink, Open Modelica, JModelica, Dymola)
able to model and simulate both hardware (e.g., mechani-
cal or electrical systems) as well as software components.
Simulation-based verification can be carried out using two
approaches: online and offline. The online approach typi-
cally selects the next disturbance to be simulated using a
Monte Carlo strategy. The verification activity then consists
of a sequence of disturbance generation and simulation
steps. The offline approach first generates the whole (or-
dered) set of scenarios to be simulated (scenario generation
phase) and then simulates all of them (verification phase).

The verification activity simulates the SUV until either a
scenario (counterexample) whose simulation returns FAIL is
found, or all scenarios have been simulated and simulation
returns PASS. If the verification activity returns FAIL, then
the SUV design is revised, by exploiting the counterexam-
ple, and a new verification activity is performed. We note
the following points.

First, with an offline approach to CPS verification, more
than 99% of the overall verification time is spent in the
verification phase (see, e.g., [24]). Namely, for CPSs, sim-
ulating a single scenario may take from several seconds
to several minutes (see, e.g., [24,26,28]) depending on the
complexity of the system model (since typically a system
of ordinary differential equations has to be solved in or-
der to simulate the SUV dynamics). For example, for the
SUV considered in [24], we see that generating a simula-
tion scenario takes on average 0.45 ms (thus generating
4 million simulation scenarios takes about 30 minutes),
whereas the Simulink simulation of a single scenario takes
on average about 16.8 seconds (and the sequential simula-
tion of all scenarios would take more than 700 days!). This
is in contrast with, e.g., digital hardware simulation, where
the time needed to generate a scenario and to simulate it
are comparable. Accordingly, within an offline framework,
we can afford to increase (e.g., doubling) the time spent in
the generation phase if that can decrease (even slightly)
the expected time for the verification phase. Note how-
ever that the offline approach makes sense only for CPSs,
whereas the online approach can always be used and is in-
deed the approach always used in digital hardware as well
as in software verification.
Second, whenever an error is found (and the SUV re-
vised accordingly), the verification activity needs to simu-
late again all scenarios, including those already been sim-
ulated in previous verification activities (since revising the
SUV design may have introduced new errors).

Third, in the offline approach, the scenario generation
phase is performed only once, at the beginning of the ver-
ification activity. This is possible because the scenario gen-
eration phase depends only on the environment the SUV
will be interacting with, and not on the SUV model it-
self. Thus, revising the SUV design, after an error has been
found, does not change the set of simulation scenarios to
be considered in the verification phase.

From the above points, it follows that simulating sce-
narios preceding a counterexample is indeed a waste of
time, since those scenarios will have to be simulated again
anyway. In order to minimise such a waste of time, one
would like to order the simulation scenarios in such a way
that those witnessing errors (counterexamples) are simu-
lated at the very beginning in each verification phase. Of
course, to know beforehand the set of counterexamples is
not feasible (it is indeed the purpose of the verification ac-
tivity). Furthermore, while reordering of the set of scenar-
ios to be simulated can be effectively done within an offline
framework (and has been done indeed in [25,28]), this is
not possible within an online framework where SUV simu-
lation starts before the whole set of scenarios is known.
Indeed, from [10] we see that no strategy to select the
next disturbance in an online strategy can be optimal for
all SUVs.

The above considerations motivate investigation on ef-
fective algorithms that can order the set of simulation sce-
narios so as to minimise the worst case expected time for
the verification activity within an offline CPS verification
approach.

Of course our techniques could be applied to simul-
ation-based verification of any system (be it software or
hardware) with a finite set of scenarios. However, from a
practical point of view, it only makes sense when scenario
generation takes much less than scenario simulation (see
discussion above). Presently, to the best of our knowledge,
this is only the case for CPSs and this is why we focus on
them.

1.2. Main contributions

From the previous discussion we see that the com-
putation time (defined as the number of scenarios to be
simulated before hitting a counterexample, if any) of a ver-
ification phase (off-line approach) depends on the order in
which scenarios are simulated and on where in such an or-
der counterexamples are.

Accordingly, the generic verification phase (also simply
called verification in the following) can be modelled as a
two-player zero-sum game as follows. First, player 1 (ver-
ifier) chooses the (possibly probabilistic) ordering strategy
in which scenarios will be simulated. Second, player 2 (ad-
versary) chooses which scenarios will be counterexamples
(that is, will witness an error). Finally, the verifier simu-
lates the scenarios in the chosen order.

10 T. Mancini et al. / Information Processing Letters 122 (2017) 8–16
The goal for the verifier is to minimise the verifica-
tion time, whilst the adversary aims at maximising it. In
order to achieve such a goal, the adversary must place
counterexamples in such a way that they will be the last
scenarios to be simulated by the verifier. On the contrary,
the verifier must order scenarios so that counterexamples
are among the first scenarios to be simulated.

In our game-theoretical setting, this may be modelled
by defining the payoff for the adversary as the verification
time. This entails that the verifier aims at minimising ver-
ification time.

We take a non-deterministic model for the adversary
and a probabilistic model for the verifier. Accordingly the
Worst Case Expected Verification Time (WCEVT) is the
maximum (among all possible choices of the adversary)
of the expected number of scenarios to be simulated be-
fore hitting a counterexample. The objective for the verifier
(respectively, adversary) is to minimise (respectively, max-
imise) the WCEVT. We note that the verification activity
stops as soon as a counterexample is found. Thus, without
loss of generality, we focus on the case in which the ad-
versary places just one counterexample, since placing more
than one would decrease the Expected Verification Time
(EVT).

Our main contributions are as follows.
First, we show that the minimum WCEVT is n+1

2 , where
n is the number of simulation scenarios.

Second, we show that there is an infinite set (forming
a bounded convex polytope) of optimal simulation strate-
gies, i.e., strategies for which the verifier attains the n+1

2
optimal payoff.

Third, we show that ordering simulation scenarios in a
uniformly random way yields an optimal simulation strat-
egy.

Fourth, within an online (Monte Carlo–based) simulation
setting, we show how to select probability distribution on
disturbances so that the resulting simulation strategy is op-
timal.

1.3. Paper overview

This paper is organised as follows. Section 2 compares
the paper contributions with the existing literature. Sec-
tion 3 provides basic definitions on simulation scenarios.
Section 4 characterises optimal offline simulation strate-
gies. Section 5 characterises optimal online (Monte Carlo)
simulation strategies. Section 6 gives proofs and, finally,
Section 7 provides conclusions.

2. Related work

In this section we compare our contributions with re-
lated research work.

2.1. Monte Carlo–based simulation

Within an online setting (see Section 1.1), the perfor-
mance of Monte Carlo–based exploration has been exten-
sively studied. See, e.g., [10] for a survey evaluating many
strategies to select the next action (disturbance in our set-
ting) so as to minimise the expected time to attain the
goal (error state in our context). The crucial difference of
a Monte Carlo–based approach with respect to ours is
that our strategy selects scenarios (i.e., sequences of dis-
turbances) rather than single disturbances. The rationale
behind [10] is that the set of scenarios is not known be-
forehand, but is rather discovered during the simulation
process. This is indeed the typical case for digital hard-
ware simulation and software simulation where the time
to generate a simulation scenario is comparable to that of
simulating it. However, in our setting (verification of CPSs)
the time needed to generate a simulation scenario (e.g.,
from a finite state model of the environment as in [24]) is
negligible (see Section 1.1) with respect to the time needed
to simulate it. Accordingly, by exploiting full knowledge
of the set of simulation scenarios, we can devise optimal
strategies whereas, as shown in [10], this is not possible
in the typical setting where such set is not known before-
hand. In particular, [10] shows, with counterexamples, that
selecting disturbances uniformly at random is not always an
optimal strategy, whereas we show that selecting scenarios
uniformly at random is always an optimal strategy (inde-
pendently of the SUV).

The fact that test scenarios should be uniformly dis-
tributed is widely accepted to be valid (though not for-
mally proved as it is in this paper) in many application
domains, such as: generation of “well-distributed” random
test programs for functional processors verification (see,
e.g., [3]), generation of solutions to a constraint satisfaction
problem uniformly at random (see, e.g., [14]). However,
such uniform selection of scenarios cannot be achieved
without full knowledge of the set of simulation scenar-
ios, that is our setting. Furthermore, our formal approach
goes beyond conventional wisdom, by showing that there is
indeed an infinite convex set of optimal simulation strate-
gies. This opens the door to methods that may be able to
select an optimal test strategy (not necessarily a uniform
one) even without full knowledge of the set of simulation
scenarios.

2.2. Offline generation of simulation scenarios

Knowledge of the full set of scenarios to be simulated
(offline approach, Section 1.1) can be exploited to speed up
HILS based (formal) verification of CPSs. For example, [39,
24,26,27] present offline strategies where simulation sce-
narios are ordered with respect to a Depth-First Search (DFS)
on the finite state automaton describing the set of admis-
sible disturbance sequences. We note however that none
of the above papers aims at reducing the WCEVT. Random
reordering of simulation scenarios is considered in [25,28]
with the goal of supporting graceful degradation (of exhaus-
tiveness), by estimating the omission probability (i.e., the
probability that an error is present in a yet-to-be simu-
lated scenario) during the verification activity. The present
paper further explores the benefits of random ordering of
simulation scenarios by showing how this can be used to
minimise the WCEVT, an issue not addressed in any of the
above papers.

T. Mancini et al. / Information Processing Letters 122 (2017) 8–16 11
2.3. CPS verification

Of course, CPS verification techniques have been widely
investigated within the online verification setting (Sec-
tion 1.1). For example [17,42] present online approaches
using deterministic strategies to select the next dis-
turbance to the SUV, whereas [11,41,1,42,16,33,2,23,18]
present online approaches using probabilistic strategies
(Monte Carlo simulation) to select the next disturbance to
the SUV.

Monte Carlo Model Checking of finite state determinis-
tic systems (see, e.g., [19,37,35]) is a formal (online) ver-
ification approach closely related to our setting (which
however can also handle infinite state systems). Monte
Carlo model checkers generate simulation scenarios using
a Monte Carlo–based approach randomly selecting distur-
bances (rather than scenarios as in our offline setting).

Probabilistic model checking (see, e.g., [15,21] and cita-
tions thereof) consists of checking if a probabilistic prop-
erty holds for a probabilistic system (modelled as a Markov
Chain). We differ from such online (Section 1.1) approaches
because here we consider deterministic systems and select
scenarios rather than disturbances. Moreover, our approach
is black box, that is we do not require a model for the sys-
tem to be available, since we only require availability of a
simulator. Thus the above mentioned approach cannot be
used in our setting.

2.4. Summing up

From the above, we see that none of the above on-
line approaches (i.e., Sections 2.1 and 2.3) addresses the
problem of minimising the WCEVT, which is the focus
of our offline approach. In fact, all such papers present
(online) methods to search for requirement violations in
the given system. On the contrary, our paper focuses on
understanding what is the simulation strategy that min-
imises the (expected worst case) time to find an error. In
this respect, our paper shows that an offline approach can
provide infinitely many optimal simulation strategies (Sec-
tion 4), whereas online selection strategies are, in general
(see [10]), not optimal when considering the WCEVT (Sec-
tion 5).

3. Background

In this section we give the definitions of simulation
scenario and simulation campaign, as well as other pre-
liminary notions.

In the following, unless otherwise stated, D denotes
a non-empty finite set whose elements are called uncon-
trollable inputs or disturbances. Set D models the set of
disturbances (e.g., faults, delays, etc.), including the null
disturbance (i.e., nominal case), our SUV is supposed to
withstand.

A simulation scenario is obtained by using disturbances
in D according to the following definition.

Definition 1 (Simulation Scenario). A simulation scenario δ

(or just scenario) is a finite sequence of elements of D,
that is δ = 〈d1, d2, . . . , dn〉 with di ∈ D for all i ∈ [1, n].
Given a simulation scenario δ = 〈d1, d2, . . . , dn〉, we write
δ(i) for di , and we call n the length (or time horizon)
of δ. Given two scenarios δ1 = 〈d11, d12, . . . , d1n〉 and δ2 =
〈d21, d22, . . . , d2m〉, their concatenation is defined by δ1 ·
δ2 = δ1δ2 = 〈d11, d12, . . . , d1n, d21, d22, . . . , d2m〉. We denote
D+ the set of all possible simulation scenarios on D.

Example 1 (Simulation Scenario). Let us consider the Fuel
Control System (FCS) model in the Simulink distribution,
whose formal verification has been discussed in [24,26,
28]. The model is equipped with four sensors: throttle
angle, speed, Oxygen in Exhaust Gas (EGO) and Manifold
Absolute Pressure (MAP). Let us assume that only sensors
EGO and MAP can fail, giving rise to disturbances d1 and
d2, respectively. Moreover, let us assume that the mini-
mum time between faults is one second and all faults are
transient and are repaired within one second. Hence dis-
turbance d1 models a fault on sensor EGO, followed by
a repair within one second, and disturbance d2 models
a fault on sensor MAP, followed by a repair within one
second too. We also consider the no-fault event, which
we model with disturbance d3. Then, the set of distur-
bances D is {d1, d2, d3}. The following are examples of
simulation scenarios: δ1 = 〈d1, d3, d2, d3〉 (of length 4) and
δ2 = 〈d2, d3, d2〉 (of length 3).

Remark 1 (Scenario Simulation Time). We assume that all
scenarios take basically the same time to simulate regard-
less the disturbance sequence being simulated. This holds
for many real world systems. For example, considering
again the FCS in Example 1, we have that simulating (on
an Intel(R) Xeon(R) @ 2.66 GHz Linux machine) a scenario
of length 100 seconds takes on average (over about 75000
randomly selected scenarios) 16.80 seconds with a stan-
dard deviation of 2.99 seconds (i.e., 18% of the average
time).

In the following, starting from the set of simulation
scenarios, we define the notion of simulation campaign,
which defines how each verification phase is actually per-
formed. To this end, we first define the Admissible System
Environment, which restricts the set of possible simulation
scenarios to a more useful subset for our objective.

Definition 2 (Admissible System Environment). An Admissi-
ble System Environment (ASE) is a nonempty finite set of
simulation scenarios A ⊂ D+ , such that no scenario in A
is a prefix of another one. Formally, for each δ, θ ∈ A, if
δ �= θ then there exists no σ ∈D+ such that: δ = θσ .

Example 2 (Admissible System Environment). Let us consider
the FCS model and the set of disturbances D = {d1, d2, d3}
of Example 1. Typically, one is interested in verifying
the SUV when at most one fault can occur. Thus, if we
only consider simulation scenarios of length 3, we ob-
tain the simulation scenarios set A = {δ1, . . . , δ7} consist-
ing of δ1 = 〈d1, d3, d3〉, δ2 = 〈d2, d3, d3〉, δ3 = 〈d3, d1, d3〉,
δ4 = 〈d3, d2, d3〉, δ5 = 〈d3, d3, d1〉, δ6 = 〈d3, d3, d2〉, δ7 =
〈d3, d3, d3〉. A is an ASE, in fact no scenario in A is the
prefix of another one.

12 T. Mancini et al. / Information Processing Letters 122 (2017) 8–16
Given an ASE A, we may now define the notion of sim-
ulation campaign.

Definition 3 (Simulation Campaign). A simulation campaign
σ for an ASE A = {δ1, . . . , δn} is a permutation 〈δi1 , . . . , δin 〉
of the elements of A. We denote with Sim(A) the set of
all n! simulation campaigns for A.

The j-th scenario in a simulation campaign σ , i.e., δi j ,
is denoted with σ(j). The position of a simulation sce-
nario α in the simulation campaign σ is χ(σ , α), that is,
χ(σ , α) = j if and only if δi j = σ(j) = α.

Example 3 (Simulation Campaign). Let us consider the
ASE A = {δ1, δ2, δ3}. Then the set of simulation cam-
paigns consists of 3! = 6 elements. Namely, Sim(A) =
{σ1, σ2, σ3, σ4, σ5, σ6}, where

σ1 = 〈δ1, δ2, δ3〉, σ2 = 〈δ1, δ3, δ2〉,
σ3 = 〈δ2, δ1, δ3〉, σ4 = 〈δ2, δ3, δ1〉,
σ5 = 〈δ3, δ1, δ2〉 and σ6 = 〈δ3, δ2, δ1〉.
The position where the simulation scenario δ3 occurs in
the simulation campaign σ4 is χ(σ4, δ3) = 2, whereas
the position of δ3 in the simulation campaign σ1 is
χ(σ1, δ3) = 3.

4. Minimising verification time

In this section we show the main results of our pa-
per. To this aim, we first define the notions of error in-
jection strategy and simulation strategy. This allows us to
model the verification activity as a two-player zero-sum
game. Namely, the error injection strategy is the (proba-
bilistic) strategy of the adversary player, whilst the simu-
lation strategy is the strategy for the verifier player.

Definition 4 (Error Injection Strategy and Simulation Strategy).
An error injection strategy x for an ASE A is a real-valued
function x :A → [0, 1] such that

∑
α∈A x(α) = 1.

A pure error injection strategy, denoted x∗
k for k =

1, . . . , |A|, is a strategy defined as: x∗
k (δ j) = 1 if k = j and

0 otherwise.
A simulation strategy y for an ASE A is a real-valued

function y : Sim(A) → [0, 1] such that
∑

σ∈Sim(A) y(σ) = 1.
A pure simulation strategy, denoted y∗

k for k = 1, . . . ,
|Sim(A)| = 1, . . . , |A|!, is defined as: y∗

k (σ j) = 1 if k = j
and 0 otherwise.

We denote with X the set of all error injection strate-
gies, with Y the set of all simulation strategies, with
X∗ ⊆ X the set of pure error injection strategies, and with
Y ∗ ⊆ Y the set of pure simulation strategies.

Example 4 (Error Injection Strategy and Simulation Strategy).
Let us consider the ASE A = {δ1, δ2, δ3}. Examples of er-
ror injection strategies are the functions x1, x2 ∈ X de-
fined as: x1) x1(δi) = 1

3 , i ∈ [1, 3]; x2) x2(δ1) = x2(δ3) = 0,
x2(δ2) = 1. Informally, strategy x2 consists in deterministi-
cally choosing δ2 as the failing scenario, whilst x1 consists
in picking the failing scenario at random among the three
in A. Note that x2 is a pure strategy, whilst x1 is not.
The set of simulation campaigns for A is Sim(A) =
{σ1, . . . , σ6}, where each σi is defined as in Example 3. Ex-
amples of simulation strategies are the functions y1, y2
∈ Y defined as: y1) y1(σi) = 1

6 , i ∈ [1, 6]; y2) y2(σ2) =
y2(σ4) = 1

2 , y2(σi) = 0, i = 1, 3, 5, 6. Informally, strategy
y1 chooses at random any of the six available simula-
tion campaigns whereas strategy y2 chooses at random
between the simulation campaigns σ2 and σ4. Note that
none of the above two strategies is pure.

We may now define the expected and the worst case
expected verification times defining the payoff for our
game.

Definition 5 (Expected Verification Time). Given an error in-
jection strategy x for an ASE A and a simulation strategy y
for the set of simulation campaigns Sim(A), the Expected
Verification Time (EVT) for the verification flow is defined as
the expected number of simulation scenarios to be simu-
lated before hitting the one that witnesses the error:

EVT(x, y) =
∑
δ∈A

∑
σ∈Sim(A)

x(δ)χ(σ , δ)y(σ)

The Worst Case Expected Verification Time (WCEVT) is the
maximum EVT after any adversary choice:

WCEVT(y) = max
x∈X

EVT(x, y).

Example 5 (Expected Verification Time). Let us consider the
ASE A, the error injection strategy x1 and the simulation
strategy y2 of Example 4. Then EVT(x1, y2) = 2.

The following Lemma 1 points out a property of the
EVT useful in proving our results. In Lemma 1 we con-
sider the simulation strategy associating uniform probabil-
ity to simulation campaigns and we denote it as ŷ , namely
ŷ(σ) = 1

n! for all σ ∈ Sim(A). We refer to ŷ as the uniform
simulation strategy.

Lemma 1. Let x ∈ X be an error injection strategy, x∗ ∈ X∗ a
pure error injection strategy and ŷ ∈ Y be the uniform simula-
tion strategy. Then maxx∈X EVT(x, ŷ) = maxx∗∈X∗ EVT(x∗, ŷ).

Proof. From game theory (see, e.g., [36]), we have that, for
all x ∈ X , x∗ ∈ X∗ and for ŷ ∈ Y ,
∑
δ∈A

∑
σ∈Sim(A)

x(δ)χ(σ , δ) ŷ(σ)

≤
∑
δ∈A

∑
σ∈Sim(A)

x∗(δ)χ(σ , δ) ŷ(σ),

that is EVT(x, ŷ) ≤ EVT(x∗, ŷ). This implies that
maxx∈X EVT(x, ŷ) ≤ maxx∗∈X∗ EVT(x∗, ŷ). Since X∗ ⊆ X , we
also have that maxx∈X EVT(x, ŷ) ≥ maxx∗∈X∗ EVT(x∗, ŷ). �

Lemma 1 states that, when we consider the uniform
simulation strategy ŷ, taking the maximum on set X is
equivalent to taking the maximum on the subset of pure
strategies X∗ .

T. Mancini et al. / Information Processing Letters 122 (2017) 8–16 13
Note that the goal of the verifier player is to minimise
WCEVT, i.e., to find ȳ = argminy∈Y WCEVT(y). Thus, ȳ is
the strategy for which the WCEVT takes the minimum
value, defined as:

MiniMaxEVT

= min
y∈Y

max
x∈X

∑
δ∈A

∑
σ∈Sim(A)

x(δ)χ(σ , δ)y(σ).

Our main result consists in providing a value for
MiniMaxEVT, thus providing a lower bound for the verifier
payoff, and the conditions for a simulation strategy to be
optimal. This is stated in Theorem 1 (proof in Sections 6.1
to 6.3), which is inspired by the Minimax Theorem of
Von Neumann [36].

Theorem 1 (Minimum WCEVT). Let A = {δ1, . . . , δn} be an ASE.
Then the following statements hold:

1. The value for the minimum WCEVT is:

MiniMaxEVT = miny∈Y maxx∈X EVT(x, y) = n+1
2 .

2. A simulation strategy y ∈ Y is optimal if and only if it sat-
isfies the following constraints:
∑n

t=1 t
∑

χ(σ ,δi)=t y(σ) = n+1
2 for i ∈ [1,n].

3. A simulation strategy attaining the optimal payoff
MiniMaxEVT is the uniform simulation strategy ŷ(σ) =
1
n! .

Remark 2 (Set of Optimal Simulation Strategies). There is an
infinite number of optimal simulation strategies. Namely,
any solution to the (feasibility) LP problem:
⎧⎨
⎩

∑n
t=1 t

∑
χ(σ ,δi)=t y(σ) = n+1

2 for i ∈ [1,n]∑
σ∈Sim(A) y(σ) = 1

0 ≤ y(σ) ≤ 1 for|σ ∈ Sim(A).

Note that the set of solutions to the above equations is a
closed bounded convex polytope (see, e.g., [34]).

Example 6 (Set of Optimal Simulation Strategies). Let us con-
sider the ASE A = {δ1, δ2, δ3} and the six simulation cam-
paigns in Sim(A) in Example 3. From Theorem 1 (state-
ment 1) we have that MiniMaxEVT = n+1

2 = 3+1
2 = 2. Fur-

thermore, any simulation strategy y satisfying the con-
straints in item 2 of Theorem 1 will be optimal. It is easy
to see that both simulation strategies y1 and y2 in Exam-
ple 4 satisfy the constraints in statement 2 of Theorem 1
and are therefore optimal.

5. Monte Carlo–like simulation

Theorem 1 characterises optimal off-line (i.e., selecting
scenarios before starting the simulation activity) simulation
strategies. In this section we show how the results in The-
orem 1 can be used to characterise optimal on-line (i.e.,
selecting disturbances while the simulation advances) sim-
ulation strategies. We will focus on Monte Carlo–based ap-
proaches (see Section 2.1) since typically on-line scenario
generation rests on them.
First, we note that we may represent an ASE A with a
directed (prefix) tree TA , which we call disturbance tree.
The set of vertices of TA is the set prefix(TA) of pre-
fixes of the scenarios in A, with the empty prefix being
the root of TA . Each edge (u, v) of TA is labelled with
a disturbance d ∈ D such that 〈u, d〉 = v . Accordingly, we
will usually denote edges with pairs (u, d) where u is a
node and d a disturbance.

A probability matrix for TA is a map from edges of
TA to real values in [0, 1] such that for each node u, ∑

{d:〈u,d〉∈prefix(TA)} p(u, d) = 1. Intuitively, p(u, d) can be
regarded as the probability of injecting disturbance d af-
ter having injected the sequence of disturbances u.

In the above setting we can easily compute the prob-
ability P (u) of injecting a given sequence of disturbances
as follows: P (〈〉) = 1, P (〈u, d〉) = P (u)p(u, d). Hence, given
an ASE A, the corresponding disturbance tree TA , and the
probability p of injecting disturbances, we obtain the sim-
ulation strategy y for (A, p). Namely, the simulation strat-
egy y such that, for each 〈δ1, . . . δn〉 ∈ Sim(A), is obtained
as yA(〈δ1, . . . δn〉) = ∏n

i=1
P (δi)

1−∑i−1
j=1 P (δ j)

. Note that since the

simulation scenarios in A are the leafs of TA , this defini-
tion is well posed. That is,

∑
σ∈Sim(A) yA(σ) = 1.

Remark 3. Theorem 1 provides optimality conditions for
an (A, p) simulation strategy.

Note that the (A, p) simulation strategy y is without
replacement, whereas Monte Carlo simulation strategies
are usually implemented with replacement. This eases the
implementation, since there is no need to store the already
simulated scenarios, without sacrificing performance, since
the probability of hitting the same scenario twice is negli-
gible. Of course, from a theoretical point of view, a Monte
Carlo sampling with replacement is always worse than a
sampling approach without replacements. For example, our
Monte Carlo–like (A, p) simulation strategy y is guaran-
teed to hit the error trace (if any) after at most |A| sim-
ulations, whereas a Monte Carlo simulation strategy with
replacement never offers such a guarantee within a finite
number of simulations (Coupon Collector’s Problem [9]).

Proposition 1 provides a sufficient condition under
which a probability matrix yields an optimal simulation
strategy (proof is in Section 6.4).

Proposition 1 (Optimal Monte Carlo Simulation Strategies). Let
A be an ASE, TA be the disturbance tree associated to A and p
be a probability matrix for TA . If for all δ ∈A, P (δ) = 1

|A| , then
the Monte Carlo simulation strategy y for (A, p) is optimal.

Example 7 (Optimal Monte Carlo Simulation Strategy). Let
us consider the ASE A = {δ1, δ2, δ3}, where δ1 = 〈d1, d1〉,
δ2 = 〈d2, d1〉, δ3 = 〈d2, d2〉. The disturbance tree TA as-
sociated to A is shown in Fig. 1. Let p be the prob-
ability matrix for TA defined as follows: p(〈〉, d1) = 1

3 ,
p(〈〉, d2) = 2

3 , p(〈d1〉, d1) = 1, p(〈d2〉, d1) = 1
2 , p(〈d2〉, d2) =

1
2 . Then, P (δ1) = P (δ2) = P (δ3) = 1

3 . Thus, by Proposition 1,
the corresponding simulation strategy y is optimal.

14 T. Mancini et al. / Information Processing Letters 122 (2017) 8–16

Fig. 1. Disturbance tree TA for A = {δ1, δ2, δ3}, where δ1 = 〈d1, d1〉, δ2 =
〈d2, d1〉, δ3 = 〈d2, d2〉 (Example 7 and 8).

Note that the (optimal) probability matrix in Exam-
ple 7 does not select disturbances uniformly at random.
However, many HILS-based verification techniques simu-
late the SUV by selecting disturbances uniformly at ran-
dom. That is, by choosing the probability matrix p for
TA so that for each node u and disturbance d, p(u, d) =

1
|{r|〈u,r〉∈prefix(TA)}| . This may not yield an optimal simula-
tion strategy (Remark 4).

Remark 4 (A Non-Optimal Monte Carlo Simulation Strategy).
Let D be a set of disturbances with |D| ≥ 2. Then there
exists an ASE A ⊂ D+ such that selecting disturbances
uniformly at random does not yield an optimal simulation
strategy y (Example 8).

Example 8 (Non-Optimal Monte Carlo Simulation Strategy).
Without loss of generality, let D = {d1, d2}. Let A ⊂ D+
be the ASE shown in Example 7 with n|A| = 3, whose dis-
turbance tree is shown in Fig. 1. Let p be the probability
matrix for TA such that p(u, d) = 1

k(u)
, where k(u) is the

out-degree of node u. In other words, at each step, p se-
lects disturbances uniformly at random. Then, P (δ1) = 1

2 ,
P (δ2) = P (δ3) = 1

4 . By Theorem 1, an optimal strategy y∗
consists in selecting uniformly at random the simulation
campaigns in Sim(A). This yields a payoff MiniMaxEVT =
n+1

2 = 2. The Monte Carlo simulation strategy y for (A, p)

is such that WCEVT(y) > 2, thus y is not optimal. By
definition of (A, p), simulation strategy and Example 3,
we have: y(σ1) = 1

4 , y(σ2) = 1
4 , y(σ3) = 1

6 , y(σ4) = 1
12 ,

y(σ5) = 1
6 , and y(σ6) = 1

12 .

We can compute WCEVT(y) = maxx∗∈X∗ EVT(x∗, y) by
considering only pure error injection strategies x∗
(Lemma 1). In this case, X∗ = {x∗

1, x
∗
2, x

∗
3} (see Defini-

tion 4), and the values for EVT(x∗
i , y) for i ∈ [1, 3] are:

EVT(x∗
1, y) = 5

3 , EVT(x∗
2, y) = 13

6 , and EVT(x∗
3, y) = 13

6 .

Thus WCEVT(y) = max
{

5
3 , 13

6 , 13
6

}
= 13

6 > 2.

6. Proof of results

In this section we provide the proofs of the main results
of this paper.

6.1. Theorem 1: Optimal value of MiniMaxEVT

In order to prove that MiniMaxEVT = n+1
2 , we use the

following two properties of MiniMaxEVT.
i) For any two-player zero-sum game, by the Minimax
Theorem (see, e.g., [36]), we have: MiniMaxEVT =
maxx∈X miny∈Y EVT(x, y) = miny∈Y maxx∈X EVT(x, y).

ii) maxx∈X miny∈Y EVT(x, y) = maxx∈X miny∗∈Y ∗ EVT(x, y∗).
In fact, since the minimum is reachable for at least
one pure strategy, we can write: miny∈Y EVT(x, y) ≥
miny∗∈Y ∗ EVT(x, y∗). On the other hand, since Y ∗ ⊆ Y ,
we have miny∈Y EVT(x, y) ≤ miny∗∈Y ∗ EVT(x, y∗), and
consequently the property.

To prove the theorem it is sufficient to show that

V 1 = max
x∈X

min
y∈Y

EVT(x, y) ≥ n + 1

2

and that

V 2 = min
y∈Y

max
x∈X

EVT(x, y) ≤ n + 1

2
.

Since MiniMaxEVT = V 1 = V 2, we may then conclude that
MiniMaxEVT = n+1

2 .
We start by showing that V 1 ≥ n+1

2 .
From property ii) we can write:

V 1 = maxx∈X miny∈Y EVT(x, y) =
maxx∈X miny∗∈Y ∗ EVT(x, y∗) =
maxx∈X minσ∈Sim(A)

∑
δ∈A x(δ)χ(σ , δ) =

maxx∈X min1≤ j≤n!
∑n

i=1 x(δi)χ(σ j, δi).

By choosing the uniform error injection strategy x̂(δ) ≡
1
n (uniform strategy over set A), we have:

V 1 ≥ maxx∈X min1≤ j≤n!
∑n

i=1 x̂(δi)χ(σ j, δi) =
min1≤ j≤n!

∑n
i=1

1
n χ(σ j, δi) =

1
n min1≤ j≤n!

∑n
i=1 i = 1

n

∑n
i=1 i

which implies V 1 ≥ n+1
2 .

In order to show that V 2 ≤ n+1
2 , we consider the uni-

form simulation strategy ŷ(σ) ≡ 1
n! and also use Lemma 1.

Then we have:

V 2 = miny∈Y maxx∈X EVT(x, y) ≤
maxx∈X EVT(x, ŷ) = maxx∗∈X∗ EVT(x∗, ŷ) =
max1≤i≤n

∑n!
j=1 χ(σ j, δi) ŷ(σ j) =

1
n! max1≤i≤n

∑n!
j=1 χ(σ j, δi) =

1
n! max1≤i≤n

∑n
h=1(n − 1)!h =

(n−1)!
n!

∑n
h=1 h = n+1

2 .

Hence n+1
2 ≤ V 1 = V 2 ≤ n+1

2 .

6.2. Theorem 1: Optimality of simulation strategies

Without loss of generality, we focus on the case
in which the adversary places just one counterexam-
ple (see Section 1.1), say in scenario δi . The probabil-
ity that δi is in position t in a simulation campaign
σ ∈ Sim(A) is

∑
χ(σ ,δi)=t y(σ). Multiplying by t and sum-

ming out we have the expected value for the verification
time. Then a simulation strategy y ∈ Y is optimal if and
only if it satisfies statement 1 of Theorem 1, namely: ∑n

t=1 t
∑

χ(σ ,δ)=t y(σ) = n+1 for i ∈ [1, n].

i 2

T. Mancini et al. / Information Processing Letters 122 (2017) 8–16 15
6.3. Theorem 1: Optimality of uniform simulation strategy

In order to prove that the uniform simulation strategy
ŷ ≡ 1

n! is an optimal one for the verifier player, it is suf-
ficient to rewrite the expression for EVT by using ŷ. We
have:

∑n
t=1 t

∑
χ(σ ,δi)=t y(σ) = ∑n

t=1 t
∑

χ(σ ,δi)=t
1
n! . Ob-

serving that the number of simulation campaigns having
δi in position t is (n − 1)!, we have

∑n
t=1 t 1

n! (n − 1)! =
n(n+1)

2
1
n = n+1

2 .

6.4. Proposition 1: Sufficient condition for optimality of Monte
Carlo simulation strategy

From the hypothesis it follows that, for all 〈δ1, . . . , δn〉 ∈
Sim(A):

yA(〈δ1, . . . , δn〉) = ∏n
i=1

P (δi)

1−∑i−1
k=1 P (δk)

=
∏n

i=1

1
n

1−∑i−1
k=1

1
n

= ∏n
i=1

1
n

n−i+1
n

= ∏n
i=1

1
n−i+1 = 1

n! .

By Theorem 1 this is an optimal simulation strategy.

7. Conclusions

In the framework of simulation-based verification we
addressed the problem of identifying an ordering on the
scenarios (i.e., sequences of disturbances) to be simulated
so as to minimise the maximum expected time to find an
error (WCEVT). Our results can be summarised as follows.

First, the minimum WCEVT is n+1
2 , where n is the num-

ber of scenarios to be simulated.
Second, there is an infinite set of optimal simulation

strategies, i.e., strategies for which the minimum WCEVT
is attained. Furthermore, we show that such a set forms a
bounded convex polytope.

Third, ordering simulation scenarios uniformly at random
yields an optimal simulation strategy.

Fourth, within an online Monte Carlo–based simulation
setting, we show how to select probability distribution on
disturbances so that the resulting simulation strategy is op-
timal.

Acknowledgements

This research has been partially supported by FP7
projects SmartHG (317761) and PAEON (600773).

References

[1] H. Abbas, G. Fainekos, S. Sankaranarayanan, F. Ivančić, A. Gupta, Prob-
abilistic temporal logic falsification of cyber-physical systems, ACM
Trans. Embed. Comput. Syst. 12 (2s) (2013).

[2] H. Abbas, B. Hoxha, G. Fainekos, K. Ueda, Robustness-guided temporal
logic testing and verification for stochastic cyber-physical systems,
in: Proc. IEEE CYBER 2014, IEEE, 2014.

[3] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, A. Ziv,
Genesys-Pro: innovations in test program generation for functional
processor verification, IEEE Des. Test Comput. 21 (2) (2004).

[4] V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, E. Tronci, Automatic control
software synthesis for quantized discrete time hybrid systems, in:
Proc. CDC 2012, IEEE, 2012.

[5] V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, E. Tronci, On model based
synthesis of embedded control software, in: Proc. EMSOFT 2012,
ACM, 2012.
[6] V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, E. Tronci, A map-reduce
parallel approach to automatic synthesis of control software, in: Proc.
SPIN 2013, in: Lect. Notes Comput. Sci., vol. 7976, Springer, 2013.

[7] V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, E. Tronci, On-the-fly control
software synthesis, in: Proc. SPIN 2013, in: Lect. Notes Comput. Sci.,
vol. 7976, Springer, 2013.

[8] R. Alur, Formal verification of hybrid systems, in: Proc. EMSOFT 2011,
ACM, 2011.

[9] A. Arcuri, M. Iqbal, L. Briand, Random testing: theoretical results and
practical implications, IEEE Trans. Softw. Eng. 38 (2) (2012).

[10] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, D. Liebana, S. Samothrakis, S. Colton, A survey
of Monte Carlo tree search methods, IEEE Trans. Comput. Intell. AI
Games 4 (1) (2012).

[11] E. Clarke, A. Donzé, A. Legay, On simulation-based probabilistic
model checking of mixed-analog circuits, Form. Methods Syst. Des.
36 (2) (2010).

[12] E. Clarke, O. Grumberg, D. Peled, Model Checking, MIT, 1999.
[13] E. Clarke, T. Henzinger, H. Veith, Handbook of Model Checking,

Springer, 2016.
[14] R. Dechter, K. Kask, E. Bin, R. Emek, Generating random solutions for

constraint satisfaction problems, in: Proc. AAAI 2002, AAAI, 2002.
[15] G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, M. Venturini Zilli,

Finite horizon analysis of Markov chains with the Murphi verifier,
Int. J. Softw. Tools Technol. Transf. 8 (4–5) (2006).

[16] A. Dokhanchi, A. Zutshi, R. Sriniva, S. Sankaranarayanan, G. Fainekos,
Requirements driven falsification with coverage metrics, in: Proc.
EMSOFT 2015, IEEE, 2015.

[17] P. Duggirala, S. Mitra, M. Viswanathan, M. Potok, C2E2: a verification
tool for stateflow models, in: Proc. TACAS 2015, in: Lect. Notes Com-
put. Sci., vol. 9035, Springer, 2015.

[18] C. Grimm, C. Radojicic, Verification and validation of AMS systems:
towards coverage of uncertainties, in: Proc. IMSTW 2015, IEEE, 2015.

[19] R. Grosu, S. Smolka, Monte Carlo model checking, in: Proc. TACAS
2005, in: Lect. Notes Comput. Sci., vol. 3440, Springer, 2005.

[20] B. Hayes, I. Melatti, T. Mancini, M. Prodanovic, E. Tronci, Residen-
tial demand management using individualised demand aware price
policies, IEEE Trans. Smart Grid (2016), http://dx.doi.org/10.1109/
TSG.2016.2596790.

[21] D. Jansen, J. Katoen, M. Oldenkamp, M. Stoelinga, I. Zapreev, How fast
and fat is your probabilistic model checker? An experimental perfor-
mance comparison, in: Proc. HVC 2007, in: Lect. Notes Comput. Sci.,
vol. 4899, Springer, 2008.

[22] S. Jha, E. Clarke, C. Langmead, A. Legay, A. Platzer, P. Zuliani,
A bayesian approach to model checking biological systems, in: Proc.
CMSB 2009, in: Lect. Notes Comput. Sci., vol. 5688, Springer, 2009.

[23] K. Kalajdzic, C. Jégourel, A. Lukina, E. Bartocci, A. Legay, S. Smolka,
R. Grosu, Feedback control for statistical model checking of cyber-
physical systems, in: Proc. ISoLA 2016, in: Lect. Notes Comput. Sci.,
vol. 9952, Springer, 2016.

[24] T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli, E. Tronci, Sys-
tem level formal verification via model checking driven simulation,
in: Proc. CAV 2013, in: Lect. Notes Comput. Sci., vol. 8044, Springer,
2013.

[25] T. Mancini, F. Mari, A. Massini, I. Melatti, E. Tronci, Anytime system
level verification via random exhaustive hardware in the loop simu-
lation, in: Proc. DSD 2014, IEEE, 2014.

[26] T. Mancini, F. Mari, A. Massini, I. Melatti, E. Tronci, System level
formal verification via distributed multi-core hardware in the loop
simulation, in: Proc. PDP 2014, IEEE, 2014.

[27] T. Mancini, F. Mari, A. Massini, I. Melatti, E. Tronci, SyLVaaS: system
level formal verification as a service, in: Proc. PDP 2015, IEEE, 2015.

[28] T. Mancini, F. Mari, A. Massini, I. Melatti, E. Tronci, Anytime system
level verification via parallel random exhaustive hardware in the loop
simulation, MicPro 41 (2016).

[29] T. Mancini, F. Mari, I. Melatti, I. Salvo, E. Tronci, J. Gruber, B. Hayes,
M. Prodanovic, L. Elmegaard, Demand-aware price policy synthesis
and verification services for smart grids, in: Proc. SmartGridComm
2014, IEEE, 2014.

[30] F. Mari, I. Melatti, I. Salvo, E. Tronci, Synthesis of quantized feedback
control software for discrete time linear hybrid systems, in: Proc. CAV
2010, in: Lect. Notes Comput. Sci., vol. 6174, Springer, 2010.

http://refhub.elsevier.com/S0020-0190(17)30017-0/bib61626261732D6574616C3A323031333A74656373s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib61626261732D6574616C3A323031333A74656373s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib61626261732D6574616C3A323031333A74656373s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib61626261732D6574616C3A323031343A6379626572s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib61626261732D6574616C3A323031343A6379626572s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib61626261732D6574616C3A323031343A6379626572s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib616469722D6574616C3A323030343A67656E65737973s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib616469722D6574616C3A323030343A67656E65737973s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib616469722D6574616C3A323030343A67656E65737973s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib616C696D67757A68696E2D6574616C3A323031323A636463s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib616C696D67757A68696E2D6574616C3A323031323A636463s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib616C696D67757A68696E2D6574616C3A323031323A636463s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib616C696D67757A68696E2D6574616C3A323031323A656D736F6674s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib616C696D67757A68696E2D6574616C3A323031323A656D736F6674s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib616C696D67757A68696E2D6574616C3A323031323A656D736F6674s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib616C696D67757A68696E2D6574616C3A323031333A6D6170726564756365s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib616C696D67757A68696E2D6574616C3A323031333A6D6170726564756365s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib616C696D67757A68696E2D6574616C3A323031333A6D6170726564756365s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib616C696D67757A68696E2D6574616C3A323031333A6F6E746865666C79s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib616C696D67757A68696E2D6574616C3A323031333A6F6E746865666C79s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib616C696D67757A68696E2D6574616C3A323031333A6F6E746865666C79s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib616C75723A323031313A656D736F6674s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib616C75723A323031313A656D736F6674s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6172637572692D6574616C3A323031323A747365s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6172637572692D6574616C3A323031323A747365s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib62726F776E652D6574616C3A323031323A746369616967s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib62726F776E652D6574616C3A323031323A746369616967s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib62726F776E652D6574616C3A323031323A746369616967s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib62726F776E652D6574616C3A323031323A746369616967s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib636C61726B652D6574616C3A323031303A70726F626162696C6973746963s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib636C61726B652D6574616C3A323031303A70726F626162696C6973746963s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib636C61726B652D6574616C3A323031303A70726F626162696C6973746963s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib636C61726B652D6574616C3A313939393A626F6F6Bs1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib636C61726B652D6574616C3A323031363A68616E64626F6F6Bs1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib636C61726B652D6574616C3A323031363A68616E64626F6F6Bs1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib646563687465722D6574616C3A323030323A72616E646F6Ds1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib646563687465722D6574616C3A323030323A72616E646F6Ds1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib64656C6C6170656E6E612D6574616C3A323030363A73747474s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib64656C6C6170656E6E612D6574616C3A323030363A73747474s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib64656C6C6170656E6E612D6574616C3A323030363A73747474s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib646F6B68616E6368692D6574616C3A323031353A656D736F6674s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib646F6B68616E6368692D6574616C3A323031353A656D736F6674s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib646F6B68616E6368692D6574616C3A323031353A656D736F6674s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib647567676972616C612D6574616C3A323031353A63326532s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib647567676972616C612D6574616C3A323031353A63326532s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib647567676972616C612D6574616C3A323031353A63326532s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6772696D6D2D6574616C3A323031353A696D737477s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6772696D6D2D6574616C3A323031353A696D737477s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib67726F73752D6574616C3A323030353A7461636173s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib67726F73752D6574616C3A323030353A7461636173s1
http://dx.doi.org/10.1109/TSG.2016.2596790
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6A616E73656E2D6574616C3A323030373A70726F626162696C6973746963s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6A616E73656E2D6574616C3A323030373A70726F626162696C6973746963s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6A616E73656E2D6574616C3A323030373A70726F626162696C6973746963s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6A616E73656E2D6574616C3A323030373A70726F626162696C6973746963s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6A68612D6574616C3A323030393A636D7362s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6A68612D6574616C3A323030393A636D7362s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6A68612D6574616C3A323030393A636D7362s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6B616C616A647A69632D6574616C3A323031363A69736F6C61s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6B616C616A647A69632D6574616C3A323031363A69736F6C61s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6B616C616A647A69632D6574616C3A323031363A69736F6C61s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6B616C616A647A69632D6574616C3A323031363A69736F6C61s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031333A636176s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031333A636176s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031333A636176s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031333A636176s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031343A6473642D616E7974696D65s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031343A6473642D616E7974696D65s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031343A6473642D616E7974696D65s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031343A706470s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031343A706470s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031343A706470s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031353A73796C766161732D706470s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031353A73796C766161732D706470s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031363A6D696370726Fs1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031363A6D696370726Fs1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031363A6D696370726Fs1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031343A736D61727467726964636F6D6Ds1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031343A736D61727467726964636F6D6Ds1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031343A736D61727467726964636F6D6Ds1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031343A736D61727467726964636F6D6Ds1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D6172692D6574616C3A323031303A636176s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D6172692D6574616C3A323031303A636176s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D6172692D6574616C3A323031303A636176s1
http://dx.doi.org/10.1109/TSG.2016.2596790

16 T. Mancini et al. / Information Processing Letters 122 (2017) 8–16
[31] F. Mari, I. Melatti, I. Salvo, E. Tronci, Undecidability of quantized state
feedback control for discrete time linear hybrid systems, in: Proc.
ICTAC 2012, in: Lect. Notes Comput. Sci., vol. 7521, Springer, 2012.

[32] F. Mari, I. Melatti, I. Salvo, E. Tronci, Model based synthesis of control
software from system level formal specifications, ACM Trans. Softw.
Eng. Methodol. 23 (1) (2014).

[33] S. Sankaranarayanan, R. Chang, G. Jiang, F. Ivancic, State space explo-
ration using feedback constraint generation and Monte-Carlo sam-
pling, in: Proc. ACM SIGSOFT 2007, ACM, 2007.

[34] A. Schrijver, Theory of Linear and Integer Programming, Wiley, 1998.
[35] H. Sivaraj, G. Gopalakrishnan, Random walk based heuristic al-

gorithms for distributed memory model checking, Electron. Notes
Theor. Comput. Sci. 89 (1) (2003).

[36] L. Thomas, Games, Theory and Applications, Dover, 1980.
[37] E. Tronci, G. Della Penna, B. Intrigila, M. Venturini Zilli, A probabilistic

approach to automatic verification of concurrent systems, in: Proc.
APSEC 2001, IEEE, 2001.
[38] E. Tronci, T. Mancini, I. Salvo, S. Sinisi, F. Mari, I. Melatti, A. Massini,
F. Davì, T. Dierkes, R. Ehrig, S. Röblitz, B. Leeners, T.H.C. Krüger,
M. Egli, F. Ille, Patient-specific models from inter-patient biological
models and clinical records, in: Proc. FMCAD 2014, IEEE, 2014.

[39] G. Verzino, F. Cavaliere, F. Mari, I. Melatti, G. Minei, I. Salvo,
Y. Yushtein, E. Tronci, Model checking driven simulation of sat pro-
cedures, in: SpaceOps 2012, 2012.

[40] C.-H. Yang, G. Zhabelova, C.-W. Yang, V. Vyatkin, Cosimulation en-
vironment for event-driven distributed controls of smart grid, IEEE
Trans. Ind. Inform. 9 (3) (2013).

[41] P. Zuliani, A. Platzer, E. Clarke, Bayesian statistical model checking
with application to Stateflow/Simulink verification, Form. Methods
Syst. Des. 43 (2) (2013).

[42] A. Zutshi, S. Sankaranarayanan, J. Deshmukh, X. Jin, Symbolic-
numeric reachability analysis of closed-loop control software, in:
Proc. HSCC 2016, ACM, 2016.

http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D6172692D6574616C3A323031323A6963746163s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D6172692D6574616C3A323031323A6963746163s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D6172692D6574616C3A323031323A6963746163s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D6172692D6574616C3A323031343A746F73656Ds1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D6172692D6574616C3A323031343A746F73656Ds1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D6172692D6574616C3A323031343A746F73656Ds1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib73616E6B6172616E61726179616E616E2D6574616C3A323030373A736967736F6674s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib73616E6B6172616E61726179616E616E2D6574616C3A323030373A736967736F6674s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib73616E6B6172616E61726179616E616E2D6574616C3A323030373A736967736F6674s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib73636872696A7665723A313939383A696C702D626F6F6Bs1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib736976617261792D6574616C3A323030333A72616E646F6Ds1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib736976617261792D6574616C3A323030333A72616E646F6Ds1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib736976617261792D6574616C3A323030333A72616E646F6Ds1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib74686F6D61733A313938303A67616D6573s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib74726F6E63692D6574616C3A323030313A6170736563s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib74726F6E63692D6574616C3A323030313A6170736563s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib74726F6E63692D6574616C3A323030313A6170736563s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031343A666D636164s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031343A666D636164s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031343A666D636164s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib6D616E63696E692D6574616C3A323031343A666D636164s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib7665727A696E6F2D6574616C3A323031323A73706163656F7073s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib7665727A696E6F2D6574616C3A323031323A73706163656F7073s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib7665727A696E6F2D6574616C3A323031323A73706163656F7073s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib79616E672D6574616C3A323031333A746969s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib79616E672D6574616C3A323031333A746969s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib79616E672D6574616C3A323031333A746969s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib7A756C69616E692D6574616C3A323031333A666D7364s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib7A756C69616E692D6574616C3A323031333A666D7364s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib7A756C69616E692D6574616C3A323031333A666D7364s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib7A75747368692D6574616C3A323031363A68736363s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib7A75747368692D6574616C3A323031363A68736363s1
http://refhub.elsevier.com/S0020-0190(17)30017-0/bib7A75747368692D6574616C3A323031363A68736363s1

	On minimising the maximum expected veriﬁcation time
	1 Introduction
	1.1 Motivations
	1.2 Main contributions
	1.3 Paper overview

	2 Related work
	2.1 Monte Carlo-based simulation
	2.2 Ofﬂine generation of simulation scenarios
	2.3 CPS veriﬁcation
	2.4 Summing up

	3 Background
	4 Minimising veriﬁcation time
	5 Monte Carlo-like simulation
	6 Proof of results
	6.1 Theorem 1: Optimal value of MiniMaxEVT
	6.2 Theorem 1: Optimality of simulation strategies
	6.3 Theorem 1: Optimality of uniform simulation strategy
	6.4 Proposition 1: Sufﬁcient condition for optimality of Monte Carlo simulation strategy

	7 Conclusions
	Acknowledgements
	References

