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Cyber Physical Systems (CPSs) consist of hardware and software components. To verify 
that the whole (i.e., software + hardware) system meets the given specifications, exhaustive
simulation-based approaches (Hardware In the Loop Simulation, HILS) can be effectively 
used by first generating all relevant simulation scenarios (i.e., sequences of disturbances) 
and then actually simulating all of them (verification phase). When considering the whole 
verification activity, we see that the above mentioned verification phase is repeated 
until no error is found. Accordingly, in order to minimise the time taken by the whole 
verification activity, in each verification phase we should, ideally, start by simulating 
scenarios witnessing errors (counterexamples). Of course, to know beforehand the set of 
such scenarios is not feasible. In this paper we show how to select scenarios so as to 
minimise the Worst Case Expected Verification Time.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

A CPS consists of hardware (e.g., engines, electrical cir-
cuits, etc.) and software components. Thus, in order to 
verify a CPS design, we need methods and tools that can 
model and effectively support analysis of hardware as well 
as software components.

From a formal point of view, CPS can be modelled as 
hybrid systems (see, e.g., [8,32,31] and citations thereof). 
Many Model-Based Design software tools offer support for 
modelling and simulation of CPSs. Well known examples 
are Simulink, VisSim, Open Modelica, JModelica, Dymola. 
All such tools take as input a (mathematical) model of the 
behaviour of the CPS along with a simulation scenario and 
provide as output the time evolution (trace or simulation 
run) of the system.

System Level Verification of CPSs aims at verifying that 
the whole (i.e., software + hardware) system meets the 
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given specifications. System Level Formal Verification (SLFV)
has the goal of exhaustively verifying that the above holds 
for all possible operational scenarios.

For digital circuits, formal verification is usually car-
ried out using symbolic model checking techniques (see, 
e.g., [13,12]). Unfortunately, model checkers for hybrid sys-
tems cannot handle SLFV of real world CPSs because of 
state explosion. Thus, HILS is currently the main workhorse 
for system-level verification of CPSs, and is supported by 
model-based design tools.

In HILS, the control software (see, e.g., [30,4,5]) reads/
sends values from/to mathematical models (simulation) of 
the physical systems (e.g., mechanical or electrical sys-
tems) it will be interacting with. Simulation can be very 
time consuming. Accordingly, in order to reduce sys-
tem design time, there are tools providing modelling and 
simulation software along with FPGA-based hardware to 
support real-time simulation. Examples are Opal-RT and 
dSpace.

Finally, model-based design of CPSs often refers to the 
activity of synthesising control software from system re-
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quirements (see, e.g., [7,6] and citations thereof). Here, 
instead, we assume that a model for the whole system 
(software + hardware) is given, and we are only interested 
in CPS SLFV.

1.1. Motivations

Simulation-based approaches to the analysis of hybrid 
systems have been proven very effective in application do-
mains as diverse as CPSs (see, e.g., [24,28,17,11,41,1,42]), 
smart grids (see, e.g., [40,29,20]) and biological systems 
(see, e.g., [22,38]). The goal of all such approaches is to 
show that, notwithstanding the possible presence of dis-
turbances (i.e., uncontrollable events such as faults, vari-
ations in system parameters, etc.) from the environment, 
the system meets its requirements. This is done by using 
HILS to show that for all simulation scenarios (i.e., time se-
quences of disturbances) in a given set, the system meets 
its requirements. HILS, in turn, is carried out using a sim-
ulator (e.g., Simulink, Open Modelica, JModelica, Dymola) 
able to model and simulate both hardware (e.g., mechani-
cal or electrical systems) as well as software components. 
Simulation-based verification can be carried out using two 
approaches: online and offline. The online approach typi-
cally selects the next disturbance to be simulated using a 
Monte Carlo strategy. The verification activity then consists 
of a sequence of disturbance generation and simulation 
steps. The offline approach first generates the whole (or-
dered) set of scenarios to be simulated (scenario generation 
phase) and then simulates all of them (verification phase).

The verification activity simulates the SUV until either a 
scenario (counterexample) whose simulation returns FAIL is 
found, or all scenarios have been simulated and simulation 
returns PASS. If the verification activity returns FAIL, then 
the SUV design is revised, by exploiting the counterexam-
ple, and a new verification activity is performed. We note 
the following points.

First, with an offline approach to CPS verification, more 
than 99% of the overall verification time is spent in the 
verification phase (see, e.g., [24]). Namely, for CPSs, sim-
ulating a single scenario may take from several seconds 
to several minutes (see, e.g., [24,26,28]) depending on the 
complexity of the system model (since typically a system 
of ordinary differential equations has to be solved in or-
der to simulate the SUV dynamics). For example, for the 
SUV considered in [24], we see that generating a simula-
tion scenario takes on average 0.45 ms (thus generating 
4 million simulation scenarios takes about 30 minutes), 
whereas the Simulink simulation of a single scenario takes 
on average about 16.8 seconds (and the sequential simula-
tion of all scenarios would take more than 700 days!). This 
is in contrast with, e.g., digital hardware simulation, where 
the time needed to generate a scenario and to simulate it 
are comparable. Accordingly, within an offline framework, 
we can afford to increase (e.g., doubling) the time spent in 
the generation phase if that can decrease (even slightly) 
the expected time for the verification phase. Note how-
ever that the offline approach makes sense only for CPSs, 
whereas the online approach can always be used and is in-
deed the approach always used in digital hardware as well 
as in software verification.
Second, whenever an error is found (and the SUV re-
vised accordingly), the verification activity needs to simu-
late again all scenarios, including those already been sim-
ulated in previous verification activities (since revising the 
SUV design may have introduced new errors).

Third, in the offline approach, the scenario generation 
phase is performed only once, at the beginning of the ver-
ification activity. This is possible because the scenario gen-
eration phase depends only on the environment the SUV 
will be interacting with, and not on the SUV model it-
self. Thus, revising the SUV design, after an error has been 
found, does not change the set of simulation scenarios to 
be considered in the verification phase.

From the above points, it follows that simulating sce-
narios preceding a counterexample is indeed a waste of 
time, since those scenarios will have to be simulated again 
anyway. In order to minimise such a waste of time, one 
would like to order the simulation scenarios in such a way 
that those witnessing errors (counterexamples) are simu-
lated at the very beginning in each verification phase. Of 
course, to know beforehand the set of counterexamples is 
not feasible (it is indeed the purpose of the verification ac-
tivity). Furthermore, while reordering of the set of scenar-
ios to be simulated can be effectively done within an offline
framework (and has been done indeed in [25,28]), this is 
not possible within an online framework where SUV simu-
lation starts before the whole set of scenarios is known. 
Indeed, from [10] we see that no strategy to select the 
next disturbance in an online strategy can be optimal for 
all SUVs.

The above considerations motivate investigation on ef-
fective algorithms that can order the set of simulation sce-
narios so as to minimise the worst case expected time for 
the verification activity within an offline CPS verification 
approach.

Of course our techniques could be applied to simul-
ation-based verification of any system (be it software or 
hardware) with a finite set of scenarios. However, from a 
practical point of view, it only makes sense when scenario 
generation takes much less than scenario simulation (see 
discussion above). Presently, to the best of our knowledge, 
this is only the case for CPSs and this is why we focus on 
them.

1.2. Main contributions

From the previous discussion we see that the com-
putation time (defined as the number of scenarios to be 
simulated before hitting a counterexample, if any) of a ver-
ification phase (off-line approach) depends on the order in 
which scenarios are simulated and on where in such an or-
der counterexamples are.

Accordingly, the generic verification phase (also simply 
called verification in the following) can be modelled as a 
two-player zero-sum game as follows. First, player 1 (ver-
ifier) chooses the (possibly probabilistic) ordering strategy 
in which scenarios will be simulated. Second, player 2 (ad-
versary) chooses which scenarios will be counterexamples 
(that is, will witness an error). Finally, the verifier simu-
lates the scenarios in the chosen order.
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The goal for the verifier is to minimise the verifica-
tion time, whilst the adversary aims at maximising it. In 
order to achieve such a goal, the adversary must place 
counterexamples in such a way that they will be the last 
scenarios to be simulated by the verifier. On the contrary, 
the verifier must order scenarios so that counterexamples 
are among the first scenarios to be simulated.

In our game-theoretical setting, this may be modelled 
by defining the payoff for the adversary as the verification 
time. This entails that the verifier aims at minimising ver-
ification time.

We take a non-deterministic model for the adversary 
and a probabilistic model for the verifier. Accordingly the 
Worst Case Expected Verification Time (WCEVT) is the 
maximum (among all possible choices of the adversary) 
of the expected number of scenarios to be simulated be-
fore hitting a counterexample. The objective for the verifier 
(respectively, adversary) is to minimise (respectively, max-
imise) the WCEVT. We note that the verification activity 
stops as soon as a counterexample is found. Thus, without 
loss of generality, we focus on the case in which the ad-
versary places just one counterexample, since placing more 
than one would decrease the Expected Verification Time 
(EVT).

Our main contributions are as follows.
First, we show that the minimum WCEVT is n+1

2 , where 
n is the number of simulation scenarios.

Second, we show that there is an infinite set (forming 
a bounded convex polytope) of optimal simulation strate-
gies, i.e., strategies for which the verifier attains the n+1

2
optimal payoff.

Third, we show that ordering simulation scenarios in a 
uniformly random way yields an optimal simulation strat-
egy.

Fourth, within an online (Monte Carlo–based) simulation 
setting, we show how to select probability distribution on 
disturbances so that the resulting simulation strategy is op-
timal.

1.3. Paper overview

This paper is organised as follows. Section 2 compares 
the paper contributions with the existing literature. Sec-
tion 3 provides basic definitions on simulation scenarios. 
Section 4 characterises optimal offline simulation strate-
gies. Section 5 characterises optimal online (Monte Carlo) 
simulation strategies. Section 6 gives proofs and, finally, 
Section 7 provides conclusions.

2. Related work

In this section we compare our contributions with re-
lated research work.

2.1. Monte Carlo–based simulation

Within an online setting (see Section 1.1), the perfor-
mance of Monte Carlo–based exploration has been exten-
sively studied. See, e.g., [10] for a survey evaluating many 
strategies to select the next action (disturbance in our set-
ting) so as to minimise the expected time to attain the 
goal (error state in our context). The crucial difference of 
a Monte Carlo–based approach with respect to ours is 
that our strategy selects scenarios (i.e., sequences of dis-
turbances) rather than single disturbances. The rationale 
behind [10] is that the set of scenarios is not known be-
forehand, but is rather discovered during the simulation 
process. This is indeed the typical case for digital hard-
ware simulation and software simulation where the time 
to generate a simulation scenario is comparable to that of 
simulating it. However, in our setting (verification of CPSs) 
the time needed to generate a simulation scenario (e.g., 
from a finite state model of the environment as in [24]) is 
negligible (see Section 1.1) with respect to the time needed 
to simulate it. Accordingly, by exploiting full knowledge 
of the set of simulation scenarios, we can devise optimal 
strategies whereas, as shown in [10], this is not possible 
in the typical setting where such set is not known before-
hand. In particular, [10] shows, with counterexamples, that 
selecting disturbances uniformly at random is not always an 
optimal strategy, whereas we show that selecting scenarios 
uniformly at random is always an optimal strategy (inde-
pendently of the SUV).

The fact that test scenarios should be uniformly dis-
tributed is widely accepted to be valid (though not for-
mally proved as it is in this paper) in many application 
domains, such as: generation of “well-distributed” random 
test programs for functional processors verification (see, 
e.g., [3]), generation of solutions to a constraint satisfaction 
problem uniformly at random (see, e.g., [14]). However, 
such uniform selection of scenarios cannot be achieved 
without full knowledge of the set of simulation scenar-
ios, that is our setting. Furthermore, our formal approach 
goes beyond conventional wisdom, by showing that there is 
indeed an infinite convex set of optimal simulation strate-
gies. This opens the door to methods that may be able to 
select an optimal test strategy (not necessarily a uniform 
one) even without full knowledge of the set of simulation 
scenarios.

2.2. Offline generation of simulation scenarios

Knowledge of the full set of scenarios to be simulated 
(offline approach, Section 1.1) can be exploited to speed up 
HILS based (formal) verification of CPSs. For example, [39,
24,26,27] present offline strategies where simulation sce-
narios are ordered with respect to a Depth-First Search (DFS)
on the finite state automaton describing the set of admis-
sible disturbance sequences. We note however that none 
of the above papers aims at reducing the WCEVT. Random 
reordering of simulation scenarios is considered in [25,28]
with the goal of supporting graceful degradation (of exhaus-
tiveness), by estimating the omission probability (i.e., the 
probability that an error is present in a yet-to-be simu-
lated scenario) during the verification activity. The present 
paper further explores the benefits of random ordering of 
simulation scenarios by showing how this can be used to 
minimise the WCEVT, an issue not addressed in any of the 
above papers.
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2.3. CPS verification

Of course, CPS verification techniques have been widely 
investigated within the online verification setting (Sec-
tion 1.1). For example [17,42] present online approaches 
using deterministic strategies to select the next dis-
turbance to the SUV, whereas [11,41,1,42,16,33,2,23,18]
present online approaches using probabilistic strategies 
(Monte Carlo simulation) to select the next disturbance to 
the SUV.

Monte Carlo Model Checking of finite state determinis-
tic systems (see, e.g., [19,37,35]) is a formal (online) ver-
ification approach closely related to our setting (which 
however can also handle infinite state systems). Monte 
Carlo model checkers generate simulation scenarios using 
a Monte Carlo–based approach randomly selecting distur-
bances (rather than scenarios as in our offline setting).

Probabilistic model checking (see, e.g., [15,21] and cita-
tions thereof) consists of checking if a probabilistic prop-
erty holds for a probabilistic system (modelled as a Markov 
Chain). We differ from such online (Section 1.1) approaches 
because here we consider deterministic systems and select 
scenarios rather than disturbances. Moreover, our approach 
is black box, that is we do not require a model for the sys-
tem to be available, since we only require availability of a 
simulator. Thus the above mentioned approach cannot be 
used in our setting.

2.4. Summing up

From the above, we see that none of the above on-
line approaches (i.e., Sections 2.1 and 2.3) addresses the 
problem of minimising the WCEVT, which is the focus 
of our offline approach. In fact, all such papers present 
(online) methods to search for requirement violations in 
the given system. On the contrary, our paper focuses on 
understanding what is the simulation strategy that min-
imises the (expected worst case) time to find an error. In 
this respect, our paper shows that an offline approach can 
provide infinitely many optimal simulation strategies (Sec-
tion 4), whereas online selection strategies are, in general 
(see [10]), not optimal when considering the WCEVT (Sec-
tion 5).

3. Background

In this section we give the definitions of simulation 
scenario and simulation campaign, as well as other pre-
liminary notions.

In the following, unless otherwise stated, D denotes 
a non-empty finite set whose elements are called uncon-
trollable inputs or disturbances. Set D models the set of 
disturbances (e.g., faults, delays, etc.), including the null 
disturbance (i.e., nominal case), our SUV is supposed to 
withstand.

A simulation scenario is obtained by using disturbances 
in D according to the following definition.

Definition 1 (Simulation Scenario). A simulation scenario δ

(or just scenario) is a finite sequence of elements of D, 
that is δ = 〈d1, d2, . . . , dn〉 with di ∈ D for all i ∈ [1, n]. 
Given a simulation scenario δ = 〈d1, d2, . . . , dn〉, we write 
δ(i) for di , and we call n the length (or time horizon) 
of δ. Given two scenarios δ1 = 〈d11, d12, . . . , d1n〉 and δ2 =
〈d21, d22, . . . , d2m〉, their concatenation is defined by δ1 ·
δ2 = δ1δ2 = 〈d11, d12, . . . , d1n, d21, d22, . . . , d2m〉. We denote 
D+ the set of all possible simulation scenarios on D.

Example 1 (Simulation Scenario). Let us consider the Fuel 
Control System (FCS) model in the Simulink distribution, 
whose formal verification has been discussed in [24,26,
28]. The model is equipped with four sensors: throttle 
angle, speed, Oxygen in Exhaust Gas (EGO) and Manifold 
Absolute Pressure (MAP). Let us assume that only sensors 
EGO and MAP can fail, giving rise to disturbances d1 and 
d2, respectively. Moreover, let us assume that the mini-
mum time between faults is one second and all faults are 
transient and are repaired within one second. Hence dis-
turbance d1 models a fault on sensor EGO, followed by 
a repair within one second, and disturbance d2 models 
a fault on sensor MAP, followed by a repair within one 
second too. We also consider the no-fault event, which 
we model with disturbance d3. Then, the set of distur-
bances D is {d1, d2, d3}. The following are examples of 
simulation scenarios: δ1 = 〈d1, d3, d2, d3〉 (of length 4) and 
δ2 = 〈d2, d3, d2〉 (of length 3).

Remark 1 (Scenario Simulation Time). We assume that all 
scenarios take basically the same time to simulate regard-
less the disturbance sequence being simulated. This holds 
for many real world systems. For example, considering 
again the FCS in Example 1, we have that simulating (on 
an Intel(R) Xeon(R) @ 2.66 GHz Linux machine) a scenario 
of length 100 seconds takes on average (over about 75000 
randomly selected scenarios) 16.80 seconds with a stan-
dard deviation of 2.99 seconds (i.e., 18% of the average 
time).

In the following, starting from the set of simulation 
scenarios, we define the notion of simulation campaign, 
which defines how each verification phase is actually per-
formed. To this end, we first define the Admissible System 
Environment, which restricts the set of possible simulation 
scenarios to a more useful subset for our objective.

Definition 2 (Admissible System Environment). An Admissi-
ble System Environment (ASE) is a nonempty finite set of 
simulation scenarios A ⊂ D+ , such that no scenario in A
is a prefix of another one. Formally, for each δ, θ ∈ A, if 
δ �= θ then there exists no σ ∈D+ such that: δ = θσ .

Example 2 (Admissible System Environment). Let us consider 
the FCS model and the set of disturbances D = {d1, d2, d3}
of Example 1. Typically, one is interested in verifying 
the SUV when at most one fault can occur. Thus, if we 
only consider simulation scenarios of length 3, we ob-
tain the simulation scenarios set A = {δ1, . . . , δ7} consist-
ing of δ1 = 〈d1, d3, d3〉, δ2 = 〈d2, d3, d3〉, δ3 = 〈d3, d1, d3〉, 
δ4 = 〈d3, d2, d3〉, δ5 = 〈d3, d3, d1〉, δ6 = 〈d3, d3, d2〉, δ7 =
〈d3, d3, d3〉. A is an ASE, in fact no scenario in A is the 
prefix of another one.
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Given an ASE A, we may now define the notion of sim-
ulation campaign.

Definition 3 (Simulation Campaign). A simulation campaign
σ for an ASE A = {δ1, . . . , δn} is a permutation 〈δi1 , . . . , δin 〉
of the elements of A. We denote with Sim(A) the set of 
all n! simulation campaigns for A.

The j-th scenario in a simulation campaign σ , i.e., δi j , 
is denoted with σ( j). The position of a simulation sce-
nario α in the simulation campaign σ is χ(σ , α), that is, 
χ(σ , α) = j if and only if δi j = σ( j) = α.

Example 3 (Simulation Campaign). Let us consider the 
ASE A = {δ1, δ2, δ3}. Then the set of simulation cam-
paigns consists of 3! = 6 elements. Namely, Sim(A) =
{σ1, σ2, σ3, σ4, σ5, σ6}, where

σ1 = 〈δ1, δ2, δ3〉, σ2 = 〈δ1, δ3, δ2〉,
σ3 = 〈δ2, δ1, δ3〉, σ4 = 〈δ2, δ3, δ1〉,
σ5 = 〈δ3, δ1, δ2〉 and σ6 = 〈δ3, δ2, δ1〉.
The position where the simulation scenario δ3 occurs in 
the simulation campaign σ4 is χ(σ4, δ3) = 2, whereas 
the position of δ3 in the simulation campaign σ1 is 
χ(σ1, δ3) = 3.

4. Minimising verification time

In this section we show the main results of our pa-
per. To this aim, we first define the notions of error in-
jection strategy and simulation strategy. This allows us to 
model the verification activity as a two-player zero-sum 
game. Namely, the error injection strategy is the (proba-
bilistic) strategy of the adversary player, whilst the simu-
lation strategy is the strategy for the verifier player.

Definition 4 (Error Injection Strategy and Simulation Strategy). 
An error injection strategy x for an ASE A is a real-valued 
function x :A → [0, 1] such that 

∑
α∈A x(α) = 1.

A pure error injection strategy, denoted x∗
k for k =

1, . . . , |A|, is a strategy defined as: x∗
k (δ j) = 1 if k = j and 

0 otherwise.
A simulation strategy y for an ASE A is a real-valued 

function y : Sim(A) → [0, 1] such that 
∑

σ∈Sim(A) y(σ ) = 1.
A pure simulation strategy, denoted y∗

k for k = 1, . . . ,
|Sim(A)| = 1, . . . , |A|!, is defined as: y∗

k (σ j) = 1 if k = j
and 0 otherwise.

We denote with X the set of all error injection strate-
gies, with Y the set of all simulation strategies, with 
X∗ ⊆ X the set of pure error injection strategies, and with 
Y ∗ ⊆ Y the set of pure simulation strategies.

Example 4 (Error Injection Strategy and Simulation Strategy). 
Let us consider the ASE A = {δ1, δ2, δ3}. Examples of er-
ror injection strategies are the functions x1, x2 ∈ X de-
fined as: x1) x1(δi) = 1

3 , i ∈ [1, 3]; x2) x2(δ1) = x2(δ3) = 0, 
x2(δ2) = 1. Informally, strategy x2 consists in deterministi-
cally choosing δ2 as the failing scenario, whilst x1 consists 
in picking the failing scenario at random among the three 
in A. Note that x2 is a pure strategy, whilst x1 is not.
The set of simulation campaigns for A is Sim(A) =
{σ1, . . . , σ6}, where each σi is defined as in Example 3. Ex-
amples of simulation strategies are the functions y1, y2
∈ Y defined as: y1) y1(σi) = 1

6 , i ∈ [1, 6]; y2) y2(σ2) =
y2(σ4) = 1

2 , y2(σi) = 0, i = 1, 3, 5, 6. Informally, strategy 
y1 chooses at random any of the six available simula-
tion campaigns whereas strategy y2 chooses at random 
between the simulation campaigns σ2 and σ4. Note that 
none of the above two strategies is pure.

We may now define the expected and the worst case 
expected verification times defining the payoff for our 
game.

Definition 5 (Expected Verification Time). Given an error in-
jection strategy x for an ASE A and a simulation strategy y
for the set of simulation campaigns Sim(A), the Expected 
Verification Time (EVT) for the verification flow is defined as 
the expected number of simulation scenarios to be simu-
lated before hitting the one that witnesses the error:

EVT(x, y) =
∑
δ∈A

∑
σ∈Sim(A)

x(δ)χ(σ , δ)y(σ )

The Worst Case Expected Verification Time (WCEVT) is the 
maximum EVT after any adversary choice:

WCEVT(y) = max
x∈X

EVT(x, y).

Example 5 (Expected Verification Time). Let us consider the 
ASE A, the error injection strategy x1 and the simulation 
strategy y2 of Example 4. Then EVT(x1, y2) = 2.

The following Lemma 1 points out a property of the 
EVT useful in proving our results. In Lemma 1 we con-
sider the simulation strategy associating uniform probabil-
ity to simulation campaigns and we denote it as ŷ , namely 
ŷ(σ ) = 1

n! for all σ ∈ Sim(A). We refer to ŷ as the uniform
simulation strategy.

Lemma 1. Let x ∈ X be an error injection strategy, x∗ ∈ X∗ a 
pure error injection strategy and ŷ ∈ Y be the uniform simula-
tion strategy. Then maxx∈X EVT(x, ŷ) = maxx∗∈X∗ EVT(x∗, ŷ).

Proof. From game theory (see, e.g., [36]), we have that, for 
all x ∈ X , x∗ ∈ X∗ and for ŷ ∈ Y ,
∑
δ∈A

∑
σ∈Sim(A)

x(δ)χ(σ , δ) ŷ(σ )

≤
∑
δ∈A

∑
σ∈Sim(A)

x∗(δ)χ(σ , δ) ŷ(σ ),

that is EVT(x, ŷ) ≤ EVT(x∗, ŷ). This implies that
maxx∈X EVT(x, ŷ) ≤ maxx∗∈X∗ EVT(x∗, ŷ). Since X∗ ⊆ X , we 
also have that maxx∈X EVT(x, ŷ) ≥ maxx∗∈X∗ EVT(x∗, ŷ). �

Lemma 1 states that, when we consider the uniform 
simulation strategy ŷ, taking the maximum on set X is 
equivalent to taking the maximum on the subset of pure 
strategies X∗ .
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Note that the goal of the verifier player is to minimise 
WCEVT, i.e., to find ȳ = argminy∈Y WCEVT(y). Thus, ȳ is 
the strategy for which the WCEVT takes the minimum 
value, defined as:

MiniMaxEVT

= min
y∈Y

max
x∈X

∑
δ∈A

∑
σ∈Sim(A)

x(δ)χ(σ , δ)y(σ ).

Our main result consists in providing a value for 
MiniMaxEVT, thus providing a lower bound for the verifier 
payoff, and the conditions for a simulation strategy to be 
optimal. This is stated in Theorem 1 (proof in Sections 6.1
to 6.3), which is inspired by the Minimax Theorem of 
Von Neumann [36].

Theorem 1 (Minimum WCEVT). Let A = {δ1, . . . , δn} be an ASE. 
Then the following statements hold:

1. The value for the minimum WCEVT is:

MiniMaxEVT = miny∈Y maxx∈X EVT(x, y) = n+1
2 .

2. A simulation strategy y ∈ Y is optimal if and only if it sat-
isfies the following constraints:
∑n

t=1 t
∑

χ(σ ,δi)=t y(σ ) = n+1
2 for i ∈ [1,n].

3. A simulation strategy attaining the optimal payoff
MiniMaxEVT is the uniform simulation strategy ŷ(σ ) =
1
n! .

Remark 2 (Set of Optimal Simulation Strategies). There is an 
infinite number of optimal simulation strategies. Namely, 
any solution to the (feasibility) LP problem:
⎧⎨
⎩

∑n
t=1 t

∑
χ(σ ,δi)=t y(σ ) = n+1

2 for i ∈ [1,n]∑
σ∈Sim(A) y(σ ) = 1

0 ≤ y(σ ) ≤ 1 for|σ ∈ Sim(A).

Note that the set of solutions to the above equations is a 
closed bounded convex polytope (see, e.g., [34]).

Example 6 (Set of Optimal Simulation Strategies). Let us con-
sider the ASE A = {δ1, δ2, δ3} and the six simulation cam-
paigns in Sim(A) in Example 3. From Theorem 1 (state-
ment 1) we have that MiniMaxEVT = n+1

2 = 3+1
2 = 2. Fur-

thermore, any simulation strategy y satisfying the con-
straints in item 2 of Theorem 1 will be optimal. It is easy 
to see that both simulation strategies y1 and y2 in Exam-
ple 4 satisfy the constraints in statement 2 of Theorem 1
and are therefore optimal.

5. Monte Carlo–like simulation

Theorem 1 characterises optimal off-line (i.e., selecting 
scenarios before starting the simulation activity) simulation 
strategies. In this section we show how the results in The-
orem 1 can be used to characterise optimal on-line (i.e., 
selecting disturbances while the simulation advances) sim-
ulation strategies. We will focus on Monte Carlo–based ap-
proaches (see Section 2.1) since typically on-line scenario 
generation rests on them.
First, we note that we may represent an ASE A with a 
directed (prefix) tree TA , which we call disturbance tree. 
The set of vertices of TA is the set prefix(TA) of pre-
fixes of the scenarios in A, with the empty prefix being 
the root of TA . Each edge (u, v) of TA is labelled with 
a disturbance d ∈ D such that 〈u, d〉 = v . Accordingly, we 
will usually denote edges with pairs (u, d) where u is a 
node and d a disturbance.

A probability matrix for TA is a map from edges of 
TA to real values in [0, 1] such that for each node u, ∑

{d:〈u,d〉∈prefix(TA)} p(u, d) = 1. Intuitively, p(u, d) can be 
regarded as the probability of injecting disturbance d af-
ter having injected the sequence of disturbances u.

In the above setting we can easily compute the prob-
ability P (u) of injecting a given sequence of disturbances 
as follows: P (〈〉) = 1, P (〈u, d〉) = P (u)p(u, d). Hence, given 
an ASE A, the corresponding disturbance tree TA , and the 
probability p of injecting disturbances, we obtain the sim-
ulation strategy y for (A, p). Namely, the simulation strat-
egy y such that, for each 〈δ1, . . . δn〉 ∈ Sim(A), is obtained 
as yA(〈δ1, . . . δn〉) = ∏n

i=1
P (δi)

1−∑i−1
j=1 P (δ j)

. Note that since the 

simulation scenarios in A are the leafs of TA , this defini-
tion is well posed. That is, 

∑
σ∈Sim(A) yA(σ ) = 1.

Remark 3. Theorem 1 provides optimality conditions for 
an (A, p) simulation strategy.

Note that the (A, p) simulation strategy y is without
replacement, whereas Monte Carlo simulation strategies 
are usually implemented with replacement. This eases the 
implementation, since there is no need to store the already 
simulated scenarios, without sacrificing performance, since 
the probability of hitting the same scenario twice is negli-
gible. Of course, from a theoretical point of view, a Monte 
Carlo sampling with replacement is always worse than a 
sampling approach without replacements. For example, our 
Monte Carlo–like (A, p) simulation strategy y is guaran-
teed to hit the error trace (if any) after at most |A| sim-
ulations, whereas a Monte Carlo simulation strategy with 
replacement never offers such a guarantee within a finite 
number of simulations (Coupon Collector’s Problem [9]).

Proposition 1 provides a sufficient condition under 
which a probability matrix yields an optimal simulation 
strategy (proof is in Section 6.4).

Proposition 1 (Optimal Monte Carlo Simulation Strategies). Let 
A be an ASE, TA be the disturbance tree associated to A and p
be a probability matrix for TA . If for all δ ∈A, P (δ) = 1

|A| , then 
the Monte Carlo simulation strategy y for (A, p) is optimal.

Example 7 (Optimal Monte Carlo Simulation Strategy). Let 
us consider the ASE A = {δ1, δ2, δ3}, where δ1 = 〈d1, d1〉, 
δ2 = 〈d2, d1〉, δ3 = 〈d2, d2〉. The disturbance tree TA as-
sociated to A is shown in Fig. 1. Let p be the prob-
ability matrix for TA defined as follows: p(〈〉, d1) = 1

3 , 
p(〈〉, d2) = 2

3 , p(〈d1〉, d1) = 1, p(〈d2〉, d1) = 1
2 , p(〈d2〉, d2) =

1
2 . Then, P (δ1) = P (δ2) = P (δ3) = 1

3 . Thus, by Proposition 1, 
the corresponding simulation strategy y is optimal.
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Fig. 1. Disturbance tree TA for A = {δ1, δ2, δ3}, where δ1 = 〈d1, d1〉, δ2 =
〈d2, d1〉, δ3 = 〈d2, d2〉 (Example 7 and 8).

Note that the (optimal) probability matrix in Exam-
ple 7 does not select disturbances uniformly at random. 
However, many HILS-based verification techniques simu-
late the SUV by selecting disturbances uniformly at ran-
dom. That is, by choosing the probability matrix p for 
TA so that for each node u and disturbance d, p(u, d) =

1
|{r|〈u,r〉∈prefix(TA)}| . This may not yield an optimal simula-
tion strategy (Remark 4).

Remark 4 (A Non-Optimal Monte Carlo Simulation Strategy). 
Let D be a set of disturbances with |D| ≥ 2. Then there 
exists an ASE A ⊂ D+ such that selecting disturbances 
uniformly at random does not yield an optimal simulation 
strategy y (Example 8).

Example 8 (Non-Optimal Monte Carlo Simulation Strategy). 
Without loss of generality, let D = {d1, d2}. Let A ⊂ D+
be the ASE shown in Example 7 with n|A| = 3, whose dis-
turbance tree is shown in Fig. 1. Let p be the probability 
matrix for TA such that p(u, d) = 1

k(u)
, where k(u) is the 

out-degree of node u. In other words, at each step, p se-
lects disturbances uniformly at random. Then, P (δ1) = 1

2 , 
P (δ2) = P (δ3) = 1

4 . By Theorem 1, an optimal strategy y∗
consists in selecting uniformly at random the simulation 
campaigns in Sim(A). This yields a payoff MiniMaxEVT =
n+1

2 = 2. The Monte Carlo simulation strategy y for (A, p)

is such that WCEVT(y) > 2, thus y is not optimal. By 
definition of (A, p), simulation strategy and Example 3, 
we have: y(σ1) = 1

4 , y(σ2) = 1
4 , y(σ3) = 1

6 , y(σ4) = 1
12 , 

y(σ5) = 1
6 , and y(σ6) = 1

12 .

We can compute WCEVT(y) = maxx∗∈X∗ EVT(x∗, y) by 
considering only pure error injection strategies x∗
(Lemma 1). In this case, X∗ = {x∗

1, x
∗
2, x

∗
3} (see Defini-

tion 4), and the values for EVT(x∗
i , y) for i ∈ [1, 3] are: 

EVT(x∗
1, y) = 5

3 , EVT(x∗
2, y) = 13

6 , and EVT(x∗
3, y) = 13

6 .

Thus WCEVT(y) = max
{

5
3 , 13

6 , 13
6

}
= 13

6 > 2.

6. Proof of results

In this section we provide the proofs of the main results 
of this paper.

6.1. Theorem 1: Optimal value of MiniMaxEVT

In order to prove that MiniMaxEVT = n+1
2 , we use the 

following two properties of MiniMaxEVT.
i) For any two-player zero-sum game, by the Minimax 
Theorem (see, e.g., [36]), we have: MiniMaxEVT =
maxx∈X miny∈Y EVT(x, y) = miny∈Y maxx∈X EVT(x, y).

ii) maxx∈X miny∈Y EVT(x, y) = maxx∈X miny∗∈Y ∗ EVT(x, y∗).
In fact, since the minimum is reachable for at least 
one pure strategy, we can write: miny∈Y EVT(x, y) ≥
miny∗∈Y ∗ EVT(x, y∗). On the other hand, since Y ∗ ⊆ Y , 
we have miny∈Y EVT(x, y) ≤ miny∗∈Y ∗ EVT(x, y∗), and 
consequently the property.

To prove the theorem it is sufficient to show that

V 1 = max
x∈X

min
y∈Y

EVT(x, y) ≥ n + 1

2

and that

V 2 = min
y∈Y

max
x∈X

EVT(x, y) ≤ n + 1

2
.

Since MiniMaxEVT = V 1 = V 2, we may then conclude that 
MiniMaxEVT = n+1

2 .
We start by showing that V 1 ≥ n+1

2 .
From property ii) we can write:

V 1 = maxx∈X miny∈Y EVT(x, y) =
maxx∈X miny∗∈Y ∗ EVT(x, y∗) =
maxx∈X minσ∈Sim(A)

∑
δ∈A x(δ)χ(σ , δ) =

maxx∈X min1≤ j≤n!
∑n

i=1 x(δi)χ(σ j, δi).

By choosing the uniform error injection strategy x̂(δ) ≡
1
n (uniform strategy over set A), we have:

V 1 ≥ maxx∈X min1≤ j≤n!
∑n

i=1 x̂(δi)χ(σ j, δi) =
min1≤ j≤n!

∑n
i=1

1
n χ(σ j, δi) =

1
n min1≤ j≤n!

∑n
i=1 i = 1

n

∑n
i=1 i

which implies V 1 ≥ n+1
2 .

In order to show that V 2 ≤ n+1
2 , we consider the uni-

form simulation strategy ŷ(σ ) ≡ 1
n! and also use Lemma 1. 

Then we have:

V 2 = miny∈Y maxx∈X EVT(x, y) ≤
maxx∈X EVT(x, ŷ) = maxx∗∈X∗ EVT(x∗, ŷ) =
max1≤i≤n

∑n!
j=1 χ(σ j, δi) ŷ(σ j) =

1
n! max1≤i≤n

∑n!
j=1 χ(σ j, δi) =

1
n! max1≤i≤n

∑n
h=1(n − 1)!h =

(n−1)!
n!

∑n
h=1 h = n+1

2 .

Hence n+1
2 ≤ V 1 = V 2 ≤ n+1

2 .

6.2. Theorem 1: Optimality of simulation strategies

Without loss of generality, we focus on the case 
in which the adversary places just one counterexam-
ple (see Section 1.1), say in scenario δi . The probabil-
ity that δi is in position t in a simulation campaign 
σ ∈ Sim(A) is 

∑
χ(σ ,δi)=t y(σ ). Multiplying by t and sum-

ming out we have the expected value for the verification 
time. Then a simulation strategy y ∈ Y is optimal if and 
only if it satisfies statement 1 of Theorem 1, namely: ∑n

t=1 t
∑

χ(σ ,δ )=t y(σ ) = n+1 for i ∈ [1, n].

i 2
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6.3. Theorem 1: Optimality of uniform simulation strategy

In order to prove that the uniform simulation strategy 
ŷ ≡ 1

n! is an optimal one for the verifier player, it is suf-
ficient to rewrite the expression for EVT by using ŷ. We 
have: 

∑n
t=1 t

∑
χ(σ ,δi)=t y(σ ) = ∑n

t=1 t
∑

χ(σ ,δi)=t
1
n! . Ob-

serving that the number of simulation campaigns having 
δi in position t is (n − 1)!, we have 

∑n
t=1 t 1

n! (n − 1)! =
n(n+1)

2
1
n = n+1

2 .

6.4. Proposition 1: Sufficient condition for optimality of Monte 
Carlo simulation strategy

From the hypothesis it follows that, for all 〈δ1, . . . , δn〉 ∈
Sim(A):

yA(〈δ1, . . . , δn〉) = ∏n
i=1

P (δi)

1−∑i−1
k=1 P (δk)

=
∏n

i=1

1
n

1−∑i−1
k=1

1
n

= ∏n
i=1

1
n

n−i+1
n

= ∏n
i=1

1
n−i+1 = 1

n! .

By Theorem 1 this is an optimal simulation strategy.

7. Conclusions

In the framework of simulation-based verification we 
addressed the problem of identifying an ordering on the 
scenarios (i.e., sequences of disturbances) to be simulated 
so as to minimise the maximum expected time to find an 
error (WCEVT). Our results can be summarised as follows.

First, the minimum WCEVT is n+1
2 , where n is the num-

ber of scenarios to be simulated.
Second, there is an infinite set of optimal simulation 

strategies, i.e., strategies for which the minimum WCEVT 
is attained. Furthermore, we show that such a set forms a 
bounded convex polytope.

Third, ordering simulation scenarios uniformly at random 
yields an optimal simulation strategy.

Fourth, within an online Monte Carlo–based simulation 
setting, we show how to select probability distribution on 
disturbances so that the resulting simulation strategy is op-
timal.
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