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Abstract

A Railway Interloc king System (RIS) is an Embed-
ded System (namely a Supervisory Control System) that
ensures the safe op eration of the devic es in a R ailway
Station. Of course a RIS is a Safet y Critical System.

In this p aper we explore the p ossibility of integrating
automatic formal veri�cation methods in a given indus-
try RIS design ow.

The main obstructions to be over come in our work
are: selecting a formal veri�cation tool that is eÆcient
enough to solve the veri�c ationproblems at hand and
devising a cost e�e ctive integration strategy for such
tool.

Eventually we were able to devise a successful inte-
gration strategy meeting the above constr aints.This is
done without requiring major modi�c ation in the preex-
istent design ow nor retraining of personnel.

We run veri�cation experiments for a RIS designed
for the Singapore Subway. Such experiments show that
the RIS design ow obtained from our integration strat-
egy will inde edbe able to automatically verify real life
RIS designs.
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1 Introduction

A R ailwayInterlocking System (RIS) is an Embedded
System (namely a Supervisory Control System) that
ensures the safe operation of the devices in a Railway
Station. E.g. a RIS ensures that it is not possible to
set (manually or automatically by some other system)
switch points in a way that may lead to train collision.
Fig. 1 shows the role of an interloc king system in the
railway control hierarchy.

It is quite obvious that a RIS is a Safety Critical Sys-
tem. Indeed RIS customers (typically Railway Compa-
nies) pay more and more attention to safet y evidence
of newly designed RISs. Certi�cation authorities and
upcoming standards (e.g. CENELEC EN50128/129 in
Europe [4, 5]) also require stronger and stronger evi-
dences arguing for the safety of eac h newly designed
RIS.

Thus when designing a RIS much e�ort goes into en-
suring its correctness w.r.t. given speci�cations. Need-
less to say this tends to raise production costs as well
as time to market. This is worsened by the always in-
creasing RIS complexity.

In this situation it is quite natural to explore meth-
ods to increase con�dence in RIS design correctness
(w.r.t. giv en speci�cations) and possibly decrease pro-
duction times and costs. Many methods ha vebeen
studied to address the above issues. For example see
[6, 9, 14, 15, 16, 17, 18, 19 , 20, 21, 22, 23 , 24, 25, 26].

The goal of our work here is to e�ectively integrate
automatic veri�cation of a RIS implementation within
a given industrial design ow. Examples of papers close
to our are: [6, 7]. Note how ev er that here we present a
case study about integrationof automatic veri�cation in
a given industrial design ow rather than a case study
about veri�c ationof a given railway station (e.g. as in
[7]).

Since we are interested in automatic veri�cation we
focus on RIS veri�cation via model chec king. Indeed,
since RISs are �nite state machines, looking at auto-
matic veri�cation via model checking is quite natural.

Automatic veri�cation via Model Checking [2] has
been very successful for hardware design. In fact it
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Figure 1: Interloc king System

guarantees, b y exhaustive state space exploration, that
a given property holds for the system model under con-
sideration. This increases con�dence in the design cor-
rectness.

In our context a RIS implementation is de�ned us-
ing a �nite state programming language with syn tax
and semantics v ery similar to those of VCL [6], a pro-
gramming language very used in RIS design.

Thus, as far as we are concerned, a RIS implementa-
tion is de�ned by a �nite state program. Our goal here
is to verify that such program meets the giv en spec-
i�cations. Since w eare applying veri�cation directly
to the RIS program we do not have any modeling ac-
tivity. Thus w e do not ha vemodeling (abstraction)
errors. In this respect we have the same situation that
one has when verifying hardware circuits starting from
e.g netlists.

The properties (safety requirements) to be veri�ed
are given to us by the signalling expert. Our task here
is only that of checking that such properties hold for
the RIS at hand. Thus, e.g., issues suc h as requir e-
ment validation (i.e. the question \are w easking the
right thing?"), correctness of the requirement formal-
ization process (done by hand by the signalling expert)
or completeness of the set of the given requirements are
not within the scope of our work. These issues are al-
ready investigate by the signalling experts with other
approaches.

The inputs to our work are a program P de�ning a
RIS and a formal safety requirement '. The output of
our work is the answer YES when P does satisfy ' or a
counterexample when P does not satisfy '.

Although model chec king is an exhaustive approach,
in our context it is to be regard as a tool (among oth-
ers) to increase con�dence in the RIS design at hand.
In fact, even after successful veri�cation with a model
chec ker many correctness issues may remain open. For
example, the correctness of model checkers usually is
not formally proved, it relies on testing. The same usu-
ally holds for the correctness of the softw are typically
needed to interface the chosen model chec kerto the
production ow.

It is not our goal to deal with the above issues. That
is our aim is not proving correctness (whatever that may
mean) of a given RIS. We have the less ambitious (as
w ell as less expensive) goal of integrating, in a cost ef-
fective way, model checking in the given design ow so
as to increase con�dence in the RIS design at hand.
This means that w eaccept to use tools (e.g. model
chec kers, interface soft w are) that are not formally veri-
�ed. Note how ev er that model chec kers are widely used
tools. Thus they have been thoroughly tested indepen-
dently by many users. Moreover interface softw areis
quite simple. It typically consists of translators from
a format to another. Thus typically testing suÆces to
�nd errors.

The core of all model checkers (e.g. SMV [10], Mur'
[27], SPIN [28 ]) is the reachability analysis, i.e. the
computation of the set of all states reachable from the
given initial states. Reachability analysis can be im-
plemented in many ways. Each of which is e�ective on
some particular class of systems.

Order ed Binary De cisionDiagrams (OBDDs) [3]
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ha ve been successfully used to implement model chec k-
ers for digital circuits (e.g. [2, 10 ]). OBDDs pro vide
a compact representation for boolean functions which,
in turn, are used to represent the transition relation of
the system to be veri�ed as well as the set of reachable
states. How ev er theOBDD based approach to veri�-
cation typically successful with hardware design is of-
ten ineÆcient when used for RISs because of the large
number of boolean variables (easily order of thousands)
occurring in RIS designs.

A typical (and often successful) approach to RIS au-
tomatic veri�cation is based on the use of SAT solvers
(i.e. tools that solv e the SATis�ability problem for
boolean functions) or tautology chec kers (i.e.tools that
check if a boolean function is identically 1). These ap-
proaches are, e.g., in [6, 9].

When using SAT solvers the veri�cation problem
is transformed into a satis�ability problem for boolean
functions. This is done by computing the set of k-
reachable states, i.e. the set of states reachable in k-
steps from the initial states. This means that when we
use SAT based model checking our horizon is bounded
(byk) whereas when using OBDDs we compute the full
set of states reachable from the initial states. For this
reason SAT based model checking is also called Bounded
Model Checking.

Although less expressive than (OBDD based) model
checking, bounded (i.e. SAT based) model checking
usually suÆces to handle the typical safet y require-
ments occurring in the RIS domain. In fact in RIS
design one is typically interested in chec king invariants.
That is properties that are preserved during any system
transition. Invarian ts can be chec ked b y taking the set
of all system states as the set of initial states and by
computing the set of 1-reachable states. This problem
can be easily transformed into a satis�ability problem
for boolean functions.

One may w onderwhy SAT based model checking
typically outperforms OBDD based model checking in
the RIS domain. In tuitiv ely this is because RISs (unlike
digital circuits) are built out of weakly coupled subsys-
tems. F or a discussion on this point we refer the reader
to [6, 9].

In this paper we present a case study exploring the
possibility of integrating automatic formal veri�cation
methods in an industry (ALSTOM in our case) design
o w for RIS.

The main obstructions to be overcome in our work
are:

1. Selecting a formal veri�cation tool that is eÆcient
enough to solve our typical veri�cation problems.

2. Integrating the selected tool in the design o w
in a cost e�ective w ay,i.e. without requiring a
complete change in the already in use design ow.

3. Keeping low the cost of writing formal safety re-
quirements. In fact safety requirements are usu-
ally given in an informal way by the customer. T o
use formal veri�cation such safet y requirements
ha ve to be formalized.Essentially this has to be
done by hand by signalling experts. A major re-
training of these people has to be avoided.

We were able to devise a successful integration strat-
egy meeting the above constraints. To the best of our
knowlodge the issue of fully integrating automatic ver-
i�cation in a design ow similar to ours has not been
addressed so far. Here are our main results.

1. We were able to embed SAT based model checking
in our target design ow. This was done by em-
bedding the model chec ker BMC (Bounded Model
Checker, [1]) in the design ow. BMC transforms
a bounded model checking problem into a satis-
�ability problem that can then be solved using a
SAT solver. T o this end we used SATO [8] which
is a very eÆcient SAT solver.

2. We were able to integrate veri�cation into the de-
sign ow without requiring modi�cations in the
preexistent design ow. In fact w emanaged to
transparently interface model checking with the
existing design tools. Such interfacing only re-
quires an easy translations of formats from the
netlist lik e format used (by the designers) to de-
�ne RISs to the input format of BMC.

3. We avoided the need for retraining of person-
nel (namely signalling experts). This has been
achieved by writing formal requirements using
the same language used to de�ne the in terloc k-
ing logic. This allows signalling experts to write
formal requirements in a language very familiar
to them, thus avoiding retraining of personnel.

In our case the language used to de�ne interloc k-
ing logic is parametric w.r.t. the railway sta-
tion under consideration. As a result the formal-
ization of safet y requirements is also parametric
w.r.t. the railway station under consideration. It
is important to note that safety requirements de-
pends on customer general (safety) rules and not
on the particular railway station under consid-
eration. This allows us to reuse the same for-
mal speci�cations for the same customer. This
is a considerable saving since in RIS designs cus-
tomers (Railway Companies) do not change so of-
ten.
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4. To show that our integration strategy can indeed
handle real life RIS designs w e present experi-
mental results of its use for the veri�cation of
some safety requirements for an Interlocking Sys-
tem developed for the Singapore Subw ay. The
�nite state program de�ning such RIS has more
than 2000 boolean variables. Safet y requirements
for suc h RIS are veri�ed (or a counter example is
found) in seconds.

2 Design Flow

We will shortly describe the part of the target design
ow relevant for our case study.

The station layout is giv en from the customer (i.e.
a railway company). A station layout de�nes, among
other things, track connections and position of signals.

T ypicallystation layouts are de�ned from railway
companies using drawings. Examples of station layouts
can be found, e.g., in [29].

For further elaboration, ho w ev er,a textual repre-
sen tation is used. Thus, from the customer format, a
textual representation of the station layout is gener-
ated. Such textual representation uses Prolog facts to
de�ne the station layout.

Interloc king rules are given (rather informally) by
the customer. Such rules are formalized, using a Prolog-
like language, by signalling experts.

The Prolog facts de�ning the station layout as well
as the (formalized) in terloc kingrules are giv en as in-
put to an ALSTOM proprietary expert system called
ADES2 which as output produces a �nite state pro-
gram de�ning our RIS (�g. 2). More precisely ADES2
outputs a list of boolean equations de�ning a Finite
State Machine (FSM) implementing the control logic
for our interloc king system.

ADES2 output is then handled to other tools that
generate an EPROM implementation for the FSM gen-
erated by ADES2.

Our task is to verify that the output produced by
ADES2 satis�es giv en safet y requirements. We must
also devise a reasonable way (forALSTOM signalling
experts) to de�ne such safet y requirements.

3 Integration of Formal Veri�ca-

tion

For us the system to be veri�ed is the output of ADES2.
Such output, essen tially ,describes a �nite state ma-
chine implementing the interloc king control rules. Note
ho w ev erthat interloc king con trol rules are not our
safet y requirements.

Interlocking Rules

Station Layout

ADES2
RIS program

Figure 2: Our target design ow

Speci�cations are a list of safet y requirements de-
scribed in natural language. These properties, ev en-
tually, have to be formalized in a language suitable as
input to a veri�cation tool.

Finally, the system description and the speci�ca-
tions have to be fed into an automatic veri�cation tool
and the result returned to the engineers in a format
familiar to them.

In the following we describe how we addressed the
abo ve issues in our approach to integration of automatic
veri�cation in our target design ow.

Our goal is not to explain ADES2 syntax. Thus,
in order to improve readability and save space in our
exposition in what follows we will freely modify ADES2
syntax to make it resemble to (more or less) known
languages.

3.1 F romADES2 format to BMC

The output of ADES2 de�nes the system(RIS) to be
veri�ed. This is done by using a �nite state program-
ming language very similar to VCL [6], a programming
language often used in the RIS domain. F rom this point
of view our translation task is similar to the one in [7].

In �g. 4 is a small part of the interloc king logic
(ADES2 output) for the Singapore Subw ay.

The program in �g. 4 de�nes a �nite state sequential
machine. All variables range on boolean values. Given
values for present state (suÆx NXC) and input variables
(suÆx DI) it de�nes values for next state (suÆx CR)
and output variables (suÆx XO).

ADES2 programs use the following boolean opera-
tors: * (logical and), + (logical or), .N. (logical nega-
tion).

Roughly speaking semantics of ADES2 programs is
as follows. In an endless loop the program is read se-
quentially from the beginning to the end. F or each
equation in the program the rhs is evaluated and its
value is assigned to the lhs. Of course eac h variable
can only be de�ned at most once, i.e. it appears at
most once on the lhs of an equation. Since equations
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ADES2 BMC

SATO
YES

RIS
Program

Station Layout

Program
BMC

SAT problem

Interlocknig Rules + Safety Requirements

Translator

RIS2BMC

Counterexample

Figure 3: T arget design ow integrated with automatic veri�cation tools

are processed sequentially a state variable can only ap-
pear with suÆx CR on the lhs of its de�nition. More-
over a state variable can only appear with suÆx NXC in
the rhs of any equation before its de�nition (included)
and canonly appear with suÆx CR in the rhs of an y
equation after its de�nition. These restrictions are con-
sisten t with the interpretation of suÆxes NXC and CR

as, respectively, present state and next state.

T okeep our examples small in �g. 4 w ehave re-
placed most of the circuit de�ned by ADES2 with fake
inputs. Such inputs are denoted with identi�ers start-
ing with the word FAKE in �g. 4.

Many of the properties w ew an tto verify are in-
variants. That is properties that are supposed to hold
along any computation path. They are typically writ-
ten with a notation like AGf which reads as follo ws:
\forAny computation pathGlobally f holds", where f
is a propositional formula formalizing our requirement.

Automatic veri�cation of invarian tsdoes not re-
quire the full pow er of model chec king,Bounded Model
Checking [1] suÆces (see also section 1). This suggested
us to use bounded model checking which indeed turned
out to be much more e�ective than OBDD based model
checking for our problem.

Essentially our translator takes as input an ADES2
output �le and translates it into a format suitable for
BMC (Bounded Model Checker) [1]. BMC is a bounded
model checker which input language is essen tially as
that of SMV [10] which is a very popular OBDD based
model checker.

BMC translates our bounded model checking prob-
lem in to a satis�ability problemfor boolean functions
(SAT problem). In particular it translates its input into
a format suitable for a certain number of SAT solvers
(i.e. tools that solve a SAT problem). We used the SAT
solver SATO [8].

Fig. 3 shows the design ow we obtain (from that
in �g. 2) after integration withautomatic v eri�cation
tools.

The output of our translator for the RIS in �g. 4 is
in �g. 5.

3.2 Translating Speci�cations

As far as we are concerned the input of ADES2 essen-
tially consists of 2 kind of �les. Files de�ning the layout
of the railway station to be controlled and �les de�ning
the (in terlocking) control rules. All together the �rst
kind of �les de�ne a database DB.

The syntax ofDB �les is prolog-like, i.e. FOL (First
Order Logic) syntax is used to de�ne DB.

An example of (part of) the database de�ning the
layout of the Singapore Subw ay is in �g. 6.

The track circuit list in �g. 6 says that iden ti-
�ers of form cdbx (x positive integer) denote track cir-
cuits. Analogously the switch point list in �g. 6 says
that iden ti�ersof form devy (y positiv einteger) de-
note switch points. In general there are many such lists
de�ning names for each component of the railway sta-
tion. The railway station layout is de�ned using re-
lations. E.g. db(is in(dev600,cdb604)) says that
the switc hpoint dev600 belongs to the track circuit
cdb604.

A query on DB is essentially a FOL formula on the
database. That is a query is a formula Q(x1; : : : xn)
where x1; : : : xn are free variables. The result of a
query is the set R of n-tuples (X1; : : :Xn) s.t. for each
(X1; : : : Xn) 2 R w ehave that DB j= Q(X1; : : : Xn),
i.e. Q(X1; : : : Xn) holds in the databaseDB. Of course,
since our database (railway station) is �nite there will
only be a �nite set of tuples satisfying Q.

F or example, using again the database in �g. 6, the
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BOOL B604_TMR = B604_NXC

BOOL B604_CR = FAKE1_DI

BOOL B605_TMR = B605_NXC

BOOL B605_CR = FAKE2_DI

BOOL B661_TMR = B661_NXC

BOOL B661_CR = B605_CR + FAKE3_DI

BOOL IP600_CR = B604_TMR * B605_TMR

BOOL IP603_CR = B605_TMR * B661_TMR

Figure 4: P art of ADES2 output for the Singapore Subw ay Interloc king

set of tuples satisfying the formula is in(devx, cdby)

is f(dev600, cdb604), (dev603, cdb605)g.

Interloc king control logic is de�ned using rules that
tell ADES2 which equations should appear in the out-
put �le. Essentially this is done by asking ADES2 to
generate an equation for eac h tuple satisfying a given
formula.

We use a C-like syntax when showing ADES2 rules
generating interloc king logic.

F or example the rule in �g. 7 generates the �rst four
equations of the ADES2 output �le in �g. 4.

Alstom signalling experts are familiar with ADES2
rule language since it is used to de�ne interlocking rules
(e.g. as in �g. 7). F or this reason we decided to use
the same language to de�ne formal speci�cations too.

First of all it is to be understood that a safety
requirement must hold for all railway components to
which it applies. A typical safety requirement may look
like:

F or all tr ack cir cuitscdbx, for all switch points devy
s.t. switch point devy is in tr ack cir cuitcdbx we have:
if cdbx is occupied by a train then devy is blo cked (i.e.
cannot be moved).

In other words, a safety requirement de�nes a safety
property that applies to tuples (pair (cdbx, devy) in the
above case) of railway components (e.g. track circuits,
switch points, signals, etc).

The set of tuples to which the safet y requirement
applies can be de�ned with a FOL formula which pred-
icate symbols are de�ned using the database in input
to ADES2.

In our case a generic safet y requirement will ha ve
the form:

8p1; : : : pn s.t. Q(p1; : : : pn) AGF (p1; : : : pn),

where Q is a FOL formula de�ning the set of tuples
(P1; : : : Pn) to which the safety requirement applies and
F (p1; : : : pn) denotes a boolean expression de�ning the
safety property itself.

Now, let A be the set of tuples satisfying Q.
That is, A = f(P1; : : : Pn) j DB j= Q(P1; : : : Pn)g =
f(P1;1; : : : P1;n), . . . (Pk;1; : : : Pk;n) g.

All w e have to do is to check validit y of the
following k safet y formulas: AGF (P1;1; : : : P1;n),
. . .AGF (Pk;1; : : : Pk;n).

Our goal is to write the above safet y require-
ments as rules for ADES2. This is done by writ-
ing a rule that asks ADES2 to print, for eac h tuple
(Pi;1; : : : Pi;n) 2 A an equation with rhs F (Pi;1; : : : Pi;n)
and lhs SPEC <requirement id> i X0.

Suc h equations will be added at the end of the usual
ADES2 output �le (i.e. the �le de�ning our RIS). Also
bu�er variables must be added to store present values
NXC of state v ariables.In fact, because of the VCL-like
semantics of the programming language used to de�ne
RISs, at the end of the ouput �le of ADES2 only next
state CR values are available. We use the pre�x OLD

for suc h new bu�er variables.

ADES2 can be con�gured so that it adds automati-
cally the equations for such bu�er (OLD) variables at the
beginning of the output �le and the equations for the
SPEC variables at the end of the output �le. We devised
a way to automatically generate such con�guration �les
for ADES2 starting from the station de�nition. This
makes this process fully automatic.

The only thing that has to be done by hand is the
formalization of the safet y requirement. This can be
done using the rule language of ADES2. It is important
to note that this formalization step has to be done by a
signalling expert since very speci�c domain knowledge
is needed. Thus using a speci�cation language (namely
ADES2 rule language) kno wnto signalling experts is
crucial to make our integration useful.

An example will hopefully clarify the matter. Con-
sider the (part of) database in �g. 6. Suppose we wan t
to verify the following requirement:

SR1: If the T rackCircuit is occupie dthen Point
L ocking Status shall not be cleared.
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DEFINE

B604_TMR := B604_NXC ;

B604_CR := FAKE1_DI ;

B605_TMR := B605_NXC ;

B605_CR := FAKE2_DI ;

B661_TMR := B661_NXC ;

B661_CR := B605_CR | FAKE3_DI ;

IP600_CR := B604_TMR & B605_TMR ;

IP603_CR := B605_TMR & B661_TMR ;

ASSIGN

next(B604_NXC) := B604_CR;

next(B605_NXC) := B605_CR;

next(B661_NXC) := B661_CR;

next(IP600_NXC) := IP600_CR;

next(IP603_NXC) := IP603_CR;

-- Translation of ADES2 output ends here.

-- Spec1

--SPEC AG(!B604_NXC -> !IP600_CR)

-- Spec2

SPEC AG(!B605_NXC -> !IP603_CR)

Figure 5: BMC translation of ADES2 output �le in �g. 4

/*** TRACK CIRCUITS ***/

db(cdb(cdb604)).

db(cdb(cdb605)).

/* SWITCH POINTS */

db(switch_point(d ev600 )).

db(switch_point(d ev601 )).

db(switch_point(d ev602 )).

db(switch_point(d ev603 )).

/* SWITCH POINTS, TRACK CIRCUITS */

db(is_in(dev600,c db604 )).

db(is_in(dev603,c db605 )).

Figure 6: Example of database in input to ADES2

i = 1; forall cdbx s.t. db(cdb(cdbx)) f
printf(``B%d TMR = B%d NXCnn'', x);

printf(``B%d CR = FAKE%d DInn'', x, i); i++; g

Figure 7: Example of rules input to ADES2
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i = 1;

forall (cdbx, devy) s.t. db(is in(devy, cdbx)) f
printf(``SPEC SR1 %d XO = OLD B %d X0 + .N.IP %d CRnn'', i, x, y);

i++; g

Figure 8: F ormalization of safety requirements as ADES2 rules

BOOL OLD_B604_XO = B604_NXC

BOOL OLD_B605_XO = B605_NXC

BOOL OLD_B661_XO = B661_NXC

BOOL OLD_IP600_XO = IP600_NXC

BOOL OLD_IP603_XO = IP603_NXC

BOOL B604_TMR = B604_NXC

BOOL B604_CR = FAKE1_DI

BOOL B605_TMR = B605_NXC

BOOL B605_CR = FAKE2_DI

BOOL B661_TMR = B661_NXC

BOOL B661_CR = B605_CR + FAKE3_DI

BOOL IP600_CR = B604_TMR * B605_TMR

BOOL IP603_CR = B605_TMR * B661_TMR

BOOL SPEC_SR1_1_XO = OLD_B604_XO + .N.IP600_CR

BOOL SPEC_SR1_2_XO = OLD_B605_XO + .N.IP603_CR

Figure 9: ADES2 output using safety rule in �g. 8

Here is how our signalling expert formalized such
rule for us.

Step 1. Rule SR1 means the following. F or all trac k
circuits cdbx, for all switch points devy s.t. the switch
point devy is in the track circuit cdbx the following
must hold: if cdbx is occupied by a train then devy is
blocked.

Step 2 T rackcircuit cdbx is occupied i� variable
B x NXC is 0 (false). The switch point is bloc ked when
variable IP y is 0 (false).

Step 3. A possible ADES2 rule formalizing safety
requirement SR1 is in �g. 8.

Note ho wstep1 and, even more, step 2, require a
speci�c signalling expertise.

The output of ADES2 when the rule in �g. 8 is
added to the other rules is in �g. 9.

It is important to relize that therule in �g. 8 for-
malizing the safet y requirement SR1 does not change
when we change the railway station layout. That is it
is parametric w.r.t. the station layout. Of course a
�nite state model checker cannot handle requirements
that are parametric w.r.t. the station layout. ADES2
takes care of instatiating automatically the safet y re-
quirements accordingly to the station layout. E.g. the
equations produced automatically by ADES2 when us-

ing the rule in �g. 8 are in �g. 9. As a result, as far
as the signalling expert is concerned, formal safety re-
quirements change only when informal safet y require-
ments change. That is when the customer (Railway
Company) changes, which does not happen very often.

This is a very important feature of our integration
strategy since, to some extent, allo ws the signalling ex-
pert to work \the usual way".

Our translator from ADES2 output �le to BMC rec-
ognizes SPEC variables (i.e. iden ti�ers starting with the
w ordSPEC) and outputs the �le in �g. 10 when given
in input the �le in �g. 9.

Note that BMC only handles one speci�cation (intro-
duced by the keyword SPEC) at a time. Thus to verify
n SPECs it must be run n times by commenting out all
but one SPEC. This can, of course, be done automat-
ically . Since verifying a requirement implies checking
many formulas it is important that veri�cation of a sin-
gle formula can be done in a short time. In our case it
is a matter of fractions of seconds.

4 Experimental results

Since the system to be veri�ed (output from ADES2)
and the speci�cations (de�ned via ADES2 rules) are
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DEFINE

OLD_B604_XO := B604_NXC ;

OLD_B605_XO := B605_NXC ;

OLD_B661_XO := B661_NXC ;

OLD_IP600_XO := IP600_NXC ;

OLD_IP603_XO := IP603_NXC ;

B604_TMR := B604_NXC ;

B604_CR := FAKE1_DI ;

B605_TMR := B605_NXC ;

B605_CR := FAKE2_DI ;

B661_TMR := B661_NXC ;

B661_CR := B605_CR | FAKE3_DI ;

IP600_CR := B604_TMR & B605_TMR ;

IP603_CR := B605_TMR & B661_TMR ;

SPEC_SR1_1_XO := OLD_B604_XO | !IP600_CR ;

SPEC_SR1_2_XO := OLD_B605_XO | !IP603_CR ;

ASSIGN

next(B604_NXC) := B604_CR;

next(B605_NXC) := B605_CR;

next(B661_NXC) := B661_CR;

next(IP600_NXC) := IP600_CR;

next(IP603_NXC) := IP603_CR;

-- Translation of ADES2 output ends here.

-- Spec1

-- SPEC AG SPEC_SR1_1_XO

-- Spec2

SPEC AG SPEC_SR1_2_XO

Figure 10: BMC translation of ADES2 �le in �g. 9

Requirement ID Instance of formal Req
SR1 :OLD B605 XO ! :IP603 CR

SR2
(:DPR603 DI ^ :OLD R CPPR603 XO ^ :OLD PPN603 XO ^ :VPL603 CR) ! (OLD PPR603 XO

= PPR603 CR)

SR3
(:DPR603 DI ^ :OLD R CPPR603 XO ^ :OLD PPN603 XO ^ :IP603 CR) ! (OLD PPR603 XO =
PPR603 CR)

SR4
(:DPN603 DI ^ :OLD R CPPR603 XO ^ :OLD PPR603 XO ^ :VPL603 CR) ! (OLD PPN603 XO

= PPN603 CR)

SR5
(:DPN603 DI ^ :OLD R CPPR603 XO ^ :OLD PPR603 XO ^ :IP603 CR) ! (OLD PPN603 XO =
PPN603 CR)

Figure 11: Some Safety Requirement

Req Id SR1 SR2 SR3 SR4 SR5
CPU (sec) 0.23 0.27 0.29 0.34 0.34

Figure 12: V eri�cation Times on a 200 MHz Pentium Linux PC with 112 MB of RAM
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de�ned using First Order L ogic (FOL) w edecided, as
a �rst step, to use BSP (Boolean Symbolic Pr ogram-
ming) [11 , 12] to carry out our experiments. BSP is,
essen tially, a FOL based interface to OBDD packages.
We used BSP to drive the Colorado University Decision
Diagram (CUDD) package [13]. This approach allowed
us to quickly carry out some experiment, since almost
no interfacing w orkhad to be done betw eenADES2
output and the model chec ker at hand (BSP).

Unfortunately the in terloc king systemfor an aver-
age size station can easily require 1000 or more state
variables. V eri�cation times even for simple properties
w ere prohibitive using OBDDs.

This suggested us to use the approach described in
this paper. Namely using SAT based model checking
via BMC [1] and SATO [8].

In the follo wingw eshow some of the experiments
w e run to assess e�ectiveness of the approach presented
in this paper. The goal of such experiments is to show
that we can handle the typical RIS veri�cation problem
arising in our given industrial environment. Our exper-
iments show that indeed a given safet y requirement can
be automatically veri�ed (or a counter example can be
generated) in fraction of seconds.

Table 11 gives some of the properties we veri�ed to-
gether with an instantiation of the expression formaliz-
ing the property. The �rst column in �g. 11 gives the
name (for further reference) of the safet y requirement
whereas the second column gives an instance of the re-
quirement for a particular set of station devices. The
second column in �g. 11 is shown just to give the reader
an idea of ho wa formalized requirement looks like in
our case. The iden ti�ersin the second column of �g.
11 that are not in �g. 9 are in parts of the RIS circuit
that we have not reported in our present exposition.

Table 12 giv es CPU time to verify the properties
sho wn in table 11. The �rst row of �g. 12 giv es the
safet y requirement iden ti�er (de�ned in the �rst column
of �g. 11) whereas the second row in �g. 12 gives CPU
times in seconds. Memory usage was alway about 3MB.

5 Conclusions

We presented a case study aimed at exploring the possi-
bility of integrating automatic formal veri�cation meth-
ods in an industry design ow for R ailway Interlocking
Systems (RIS).

The main diÆculties we had to overcome were: se-
lecting a formal veri�cation tool eÆcient enough to
solve the veri�cation problems at hand and devising
a cost e�ective integration strategy for such tool.

We were able to e�ectively in tegrate SAT based
Bounded Model Checking in our target design ow. We

achiev ed this without requiring modi�cations in the de-
sign ow nor retraining of personnel. Moreover w e de-
vised an architecture that allo ws for reuse of formal
speci�cations across di�erent railway stations as long
as the informal set of requirements does not change
(i.e. as long as the RIS customer does not change).

T oasses e�ectiveness of our approach on real life
RIS designs we have veri�ed some safety properties of
a Railway Interloc king System designed for the Singa-
pore Subw ay.Such RIS has more than 2000 boolean
variables. V eri�cation ofeac h property took less than
0.5 seconds on our machine.
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