
Proceedings of 35th IEEE Conference on: Decision and Control, Dec. 1996, Kobe, JapanOptimal Finite State Supervisory ControlEnrico Tronci1Dipartimento di Matematica Pura ed Applicata, Universit�a di L'Aquila, Coppito 67100 L'Aquila, Italytronci@univaq.itAbstractSupervisory Controllers are Discrete Event DynamicSystems (DEDSs) forming the discrete core of a Hy-brid Control System.We address the problem of automatic synthesis of Op-timal Finite State Supervisory Controllers (OSCs). Weshow that Boolean First Order Logic (BFOL) and Bin-ary Decision Diagrams (BDDs) are an e�ective meth-odological and practical framework for Optimal FiniteState Supervisory Control. Using BFOL programs (i.e.systems of boolean functional equations) and BDDs wegive a symbolic (i.e. BDD based) algorithm for auto-matic synthesis of OSCs. Our OSC synthesis algorithmcan handle arbitrary sets of �nal states as well as planttransition relations containing loops and uncontrollableevents (e.g. failures). We report on experimental res-ults on the use of our OSC synthesis algorithm to syn-thesize a C program implementing a minimum fuel OSCfor two autonomous vehicles moving on a 4�4 grid.1 IntroductionAutomatic synthesis of reactive programs is graduallybecoming a reality (e.g. see [2], [23]). Here we considera particular class of reactive programs, namely FiniteState Supervisory Controllers (SCs). SCs are the dis-crete core of a Hybrid Control System, whereas phys-ical plant and controllers form the continuous one (e.g.see [4], [13]). SCs are Discrete Event Dynamic Sys-tems (DEDSs) and as such have been widely studied.Automatic synthesis of SCs satisfying given speci�ca-tions (Supervisory Control Problem, SCP) was studiedin [18], [24], [20] within an automata-theoretic frame-work; in [1], [5] within a language-theoretic framework;in [11], [17] within a process algebra framework; in [10],[14], [15], [19] within a predicate calculus framework.In an SCP we measure performances using a 2-levelcost scale: 0 (the SC satis�es the speci�cations),1 (theSC does not satisfy the speci�cations). However quiteoften in control engineering one is interested in an SCthat is as close as possible to given speci�cations. Thisleads us to look for an SC with minimum cost on amany-level cost scale. This is the Optimal SupervisoryControl Problem, a generalization of SCP. Optimal su-pervisory control has been studied e.g. in [16], [21].In this paper we address the problem of automaticsynthesis of Optimal Finite State Supervisory Control-lers (OSCs). Informally the Optimal Finite State Super-visory Control Problem (OSCP) scenario is as follows.We are given a plant (i.e. a �nite state transition sys-tem), a set of plant states (�nal states) and a cost foreach plant transition. Plant transitions are triggeredby events (or, using a process algebra terminology, ac-tions). The set of events is �nite and is divided intotwo disjoint subsets: controllable events (e.g. inputs)1This research has been partially supported by MURST funds.

and uncontrollable events (e.g. outputs or failures). Su-pervisory control consists in restricting the plant beha-vior by disabling some (possibly all) of the controllableevents in a given plant state. Note that uncontrollableevents are always enabled. Given a supervisory controllaw an objective function (or cost index) associates toeach plant state a cost on the base of plant transitioncosts and of the set of events enabled by the supervisorin a given plant state. The OSC is the least restrict-ive supervisor that drives the plant to a �nal state andminimizes a given objective function.The main obstructions to OSC synthesis are state ex-plosion and nonmonotonicity of the �xpoint computa-tions involved in all OSC synthesis algorithms. Termin-ation of such �xpoint computations strongly depend onOSCP data (i.e. objective function, plant transition re-lation, cost domain, �nal states, controllable events).To guarantee termination and correctness (of the com-puted result) all published OSC synthesis algorithmsuse an in�nite domain (<�0 = fx j x 2 < and x � 0g)for costs and disallow loops and uncontrollable eventsin the plant transition relation. When these hypothesesare not satis�ed such algorithms in general do not ter-minate or produce wrong results.Binary Decision Diagrams (BDDs, see [7]) are an ef-�cient canonical representation for boolean functionsthat has proved very e�ective in contrasting state explo-sion in automatic veri�cation via Model Checking (e.g.see [9], [6]) as well as in automatic synthesis of SCssatisfying given speci�cations (e.g. see [5]). Howeverno symbolic (i.e. BDD based) algorithm for automaticsynthesis of OSCs has been presented in the literature.BDDs can only handle �nite domains. Thus to use themin an OSCP we must use a �nite domain to representcosts. In an OSCP costs are only used to rank super-visory control laws. Usually only the top levels (smallcosts) of such ranking need to be faithfully represented.Thus restriction to a �nite domain for costs is oftenquite reasonable.We show that a suitable monotonicity hypothesis onthe objective function allows us to use a �nite domainfor costs and to have loops and uncontrollable eventsin the plant transition relation. This, in turn, yieldsa symbolic OSC synthesis algorithm handling arbitraryplant transition relations.To show termination (and correctness) of a symbolicOSC synthesis algorithm we need to study the e�ect ofOSCP data on such symbolic algorithm. To this endwe need to represent in the same language OSCP dataand the OSC synthesis algorithm under consideration.This can be done with a symbolic (i.e. BDD based) pro-gramming language. However none of the SC or OSCsynthesis approaches described in the literature suitsour needs since none of them is based on a symbolicprogramming language. In [22] it has been shown thatBoolean First Order Logic (BFOL) can be used as asymbolic functional programming language well suited1

for automatic veri�cation of Finite State Systems. Es-sentially a BFOL program is a system of boolean func-tional equations. Here we show that BFOL programscan also be used to de�ne an OSCP and to give sym-bolic OSC synthesis algorithms.The main results in this paper are the followings.� BFOL and BDDs are an e�ective methodologicaland practical framework to de�ne and study OSCPs(sec. 4) in much the same way as calculus is for dy-namic systems on <n.� Using BFOL programs we give (5.1) a symbolic(i.e. BDD based) OSC synthesis algorithm and show(5.2) its correctness when the objective function satis�esa suitable monotonicity hypothesis. Note that no sym-bolic OSC synthesis algorithm has been presented in theliterature. Using BFOL to represent both OSCP dataand our OSC synthesis algorithm allows us to overcomethe main di�culty in our correctness proof: showingtermination of the nonmonotone �xpoint computationsinvolved in our symbolic algorithm.� Our OSC synthesis algorithm (5.1) can handlearbitrary sets of �nal states as well as plant transitionrelations containing loops and uncontrollable events.No previously published OSC synthesis algorithm canhandle such general case. Note however that our object-ive function only depends on costs for enabled events.Objective functions depending also on costs for disabledevents have been considered in [21] for costs ranging on<�0, singleton sets of �nal states and plants withoutloops or uncontrollable events.� Our symbolic algorithm can be e�ectively usedfor automatic OSC synthesis. We show (sec. 6) exper-imental results on its use to synthesize a C programimplementing a minimum fuel OSC for two autonom-ous vehicles (AVs) moving on a 4�4 grid. A problemthat cannot be solved with any of the previously pub-lished OSC synthesis algorithms because of loops anduncontrollable events (AV engine failures) in the planttransition relation.2 Basic De�nitionsIn this section we review standard de�nitions fromFirst Order Logic (FOL) and Logic Programming (e.g.see [12], [3]) and adapt them to our case: BooleanFirst Order Logic (BFOL). BFOL is simply FOL onthe boolean domain f0, 1g. BFOL syntax is the sameas that for FOL with the following provisions: the onlyconstants in BFOL alphabet are 0; 1 (propositional con-stants); there are no function symbols in BFOL alpha-bet; any BFOL term (a propositional constant or a vari-able) is a formula (this is because we are working onBooleans). FV(F) is the set of free variables in formulaF . Formula F [x := t] is obtained from formula F byreplacing all free occurrences of x in F with term t.Symbol � denotes syntactic equality between strings.We adopt the usual semantics for �rst order lan-guages. However our universe will always be the setBoole = f0; 1g of boolean values. Boolean value 0stands for false and boolean value 1 stands for true.If b denotes a boolean value we also write b for b. Thus,e.g., symbols 0, 1 are overloaded since they may denotepropositional constants, boolean values or just integers.The formal context will always make clear the intendedmeaning. In the following it is always assumed that analphabet is given.2.1 De�nition. � An interpretation I on a givenalphabet is a subset of the set fp(t1; : : : tn) j p is an n-

[I;�](0) = 0, [I; �](1) = 1, [I;�](x) = �(x),[I;�](p(t1; : : : tn)) = I(p)([I;�](t1); : : : [I;�](tn)),[I;�](:F) = if [I;�](F) then 0 else 1,[I;�](F _G) = if [I;�](F) then 1 else [I;�](G),[I;�](F ^G) = if [I;�](F) then [I;�](G) else 0,[I;�](F ! G) = if [I;�](F) then [I;�](G) else 1,[I;�](F = G) =if [I; �](F) then [I;�](G) else [I;�](:G),[I;�](9xF) =if [I; �[x := 0]](F) then 1 else [I;�[x := 1]](F),[I;�](8xF) =if [I; �[x := 0]](F) then [I;�[x := 1]](F) else 0.Figure 1:ary predicate symbol in the alphabet and t1; : : : tn arepropositional constantsg. If G is a set of predicate sym-bols we de�ne I(G) = fp(t1; : : : tn) j p(t1; : : :tn) � Iand p � Gg. We write I(p) for I(fpg). Let p be an n-ary predicate symbol and v1; : : : vn be boolean values.We de�ne the boolean value I(p)(v1; : : : vn) as follows:I(p)(v1; : : : vn) = if (p(v1; : : : vn)�I) then 1 else 0. Ifn = 0 then symbol I(p) is overloaded since it may de-note a set or a boolean value. The mathematical contextwill always make clear the intended reading for I(p).� An assignment is a map � assigning a booleanvalue �(x) to each variable x. If � is an assignment andd is a boolean value then �[x := d] is the assignments.t.: �[x := d](y) = if (y � x) then d else �(y). Wealso write x� for �(x). An environment is a pair [I; �],where I is an interpretation and � is an assignment. Anenvironment [I; �] assigns boolean values to formulas asin �g. 1.� Let P , S be set of formulas and I be an interpret-ation. We say that I is a model for S (notation: I j= S)i� for each formula F in S and for each assignment �we have [I; �](F) = 1. We say that S is a logical con-sequence of P (notation P j= S) i� for each interpreta-tion I we have: if I j= P then I j= S. If S = fFg thenwe write: I j= F , P j= F for, respectively, I j= fFg,P j= fFg.� A Model Checking Problem (MCP) is a pair(I; F), where I is an interpretation and F is a formula.Answer MC is a function from MCPs to Boole s.t.Answer MC(I; F) = 1 i� I j= F . 22.2 Notation. � We denote with [] the emptylist and with [a0, : : : an�1] the list with elements a0,: : : an�1. We say that a is in list L (notation a�L) i� a isan element of L. We denote with j L j the set of elementsin list L. If L1 = [a0; : : :an�1] and L2 = [b0; : : : bm�1]then L1 � L2 = [a0; : : :an�1; b0; : : : bm�1].� If f is a partial recursive function we write f(x) #[f(x) "] for f(x) terminates [does not terminate] on ar-gument x. 22.3 De�nition. � A program statement is aformula of the form p(x1; : : :xn) = F , where p is apredicate symbol and F is a formula s.t. FV (F) �fx1; : : :xng. Formulas p(x1; : : :xn) and F are called,respectively, the head and the body of the statement.� A (BFOL) program [module] is a �nite nonemptylist P of program statements s.t. for each predicatesymbol p occurring in a program statement in P thereis exactly [at most] one program statement in P with poccurring in the head. Note that we call program whatin logic programming is usually called (up to statementordering) the completion of a logic program (e.g. see[12] sec. 17 or [3]). Note that a program is a module,2

but the converse is false. E.g. P = [p = q] is a modulebut it is not a program since in P there is no programstatement with q as head (i.e. q is not de�ned in P).� Let P be a module. A predicate symbol pis in P i� p occurs in a statement in P . The setAlph(P) of predicate symbols in P de�nes the alpha-bet of P . The de�nition of p in P is the programstatement (if any) in P in which p occurs in the head.We de�ne: export(P) = fp j p 2 Alph(P) and thereis a program statement in P where p occurs in theheadg; import(P) = Alph(P) � export(P). Note thatfor a program P we have export(P) = Alph(P) andimport(P) = ;. We denote with size(P) the number ofsymbols in P . A model for (or a solution to) P is aninterpretation I s.t. I j= P .� Hygiene Convention. Let P , Q be modules. Un-less otherwise stated when writing P �Q it is understoodthat Alph(P) \ export(Q) = ;. This avoids us havingto worry about name clashes. E.g. [p = q] � [g = p](= [p = q; g = p]) is allowed by our hygiene conventionbut [g = p] � [p = q] is not. 22.4 Notation. We denote with boldface charac-ters vectors of predicate symbols or of formulas. Weuse a vectorial notation in the expected way. E.g.let p be an n-ary predicate symbol, q be an m-ary predicate symbol and t � [0; 1; 1; y] a vector ofterms. Then (8xp(x; t; z)_9xp(x)_8xq(x)) stands for(8x0; : : :xn�6 p(x0; : : :xn�6; 0; 1; 1; y; z) _ 9x0; : : :xn�1p(x0; : : :xn�1) _ 8x0; : : :xm�1 q(x0; : : :xm�1)). Letx � [x0; : : :xn�1] and let � be an assignment.We write �(x) or x� for [�(x0); : : :�(xn�1)]. If[F0; : : :Fn�1], [G0; : : :Gn�1] are vectors of formulas wewrite [F0; : : :Fn�1] = [G0; : : :Gn�1] for ((F0 = G0) ^: : : (Fn�1 = Gn�1)). E.g. let p � [p0; : : : pn�1] bea vector of m-ary predicate symbols and x;u be vec-tors of variables. Then x = p(u) stands for ((x0 =p0(u0; : : :um�1))^: : :(xn�1 = pn�1(u0; : : :um�1))). 2To e�ciently carry out computations on BFOL in-terpretations we need an e�cient representation forboolean functions. Binary Decision Diagrams (BDDs)(see [7] for details) are an e�cient canonical repres-entation for Boolean Functions. I.e. for each booleanfunction f there is (up to f argument ordering) exactlyone BDD, bdd(f) representing f . In the following weassume that for each predicate symbol p (in the givenalphabet) an ordering on its arguments is given. Thus,given an interpretation I, bdd(I(p)) is univocally de-termined. Moreover size bdd(G) denotes the number ofvertices in BDD G. We heavily rely on BDDs. Howeverin the following they can be replaced by any e�cient ca-nonical representation for boolean functions.We liberally use C-like pseudo-code for our al-gorithms. We omit proofs because of lack of space.3 Standard SolutionIn general a program may have one, many or no solu-tion (model). To use BFOL as a BDD based program-ming language we need to univocally associate a solu-tion (if any) to a program. This gives an operationalsemantics to BFOL and turns it into a (functional) pro-gramming language. This is done in the present sectiongeneralizing [22].3.1 De�nition. Let J be an interpretation and Pbe a module. Interpretation stdsol(J; P) is de�ned as

interpretation stdsol(interpretation J , module P)f Let P = [p0(x) = F0; : : : pn�1(x) = Fn�1];for all k = 0; : : :(n� 1) do Ik = ;; i = 0;while (i < n) f I 0 = fpi(�(x)) j[J(import(P)) [I0 [: : : In�1; �](Fi) = 1g;if (I 0 == Ii) f i = i+ 1; g else f Ii = I 0;for all k = 0; : : :(i � 1) do Ik = ;; i = 0; g greturn (I0 [: : : In�1); gFigure 2: Standard Solutionin �gure 2. Note that the computation for stdsol(J; P)may or may not terminate. If stdsol(J; P) termin-ates then stdsol(J; P) j= P . We write stdsol(P) forstdsol(;; P). Let P be a program. The standard solu-tion to P is stdsol(P). If stdsol(P) # then we writebdd(P; p) for bdd(stdsol(P)(p)). 23.2 Example. Let P1 = [p = :p]. P1 has nosolution (model) and stdsol(P1) ". Let P2 = [p = :p _q; q = q]. P2 has exactly one solution (model) I = fp; qgand stdsol(P2) ". Hence, in general, if stdsol(P) " wecannot conclude that program P has no solution. LetP3 = [p = :p _ :q; q = q]. P3 has one solution I = fpgand stdsol(P3) = fpg. Let P4 = [p = p _ :q; q = q].P4 has three solutions, namely I1 = fpg; I2 = fqg; I3 =fp; qg, and stdsol(P4) = fpg. 23.3 De�nition. A query is a pair (P; g), whereP is a program and g is a predicate symbol in P .Answer Query is a function from queries to Boole s.t.:Answer Query(P; g) = if stdsol(P) # then (ifstdsol(P) j= g(x) then 1 else 0) else ". 2Theorem 3.4 (essentially from [22]) shows thatstdsol(P) can be computed using BDDs.3.4 Theorem. Let P be a program with Alph(P)= fp0; : : : pk�1g. There are BDD based algorithmsbdd compile, bdd eval s.t.:� bdd compile(P) = if stdsol(P) # then[bdd(P; p0); : : : bdd(P; pk�1)] else ".� Answer Query(P; g) = if stdsol(P) # thenbdd eval(bdd compile(P); g) else ". 24 Optimal ControlWe show that BFOL can be e�ectively used to de�ne(4.3) an Optimal Finite State Supervisory Control Prob-lem (OSCP) as well as a solution to it (4.7). Informallythe OSCP scenario has been de�ned in sec. 1.4.1 Notation. We will use (with or withoutsubscripts) the following vectors of boolean variables.x � [x0; : : :xn�1] is a vector ranging over plant presentstates. u � [u0; : : :ur�1] is a vector ranging over plantevents. x0 � [x00; : : :x0n�1] is a vector ranging over plantnext states. v � [v0; : : : vk�1] is a vector ranging overplant transition costs. 2To each pair (x;u) we need to associate a cost vwhich is the cost to reach a �nal state from x by en-abling event u in x. For this reason as usual in classicalsupervisory control theory we restrict our attention toplants s.t. for each state x, each transition from x leadsto a �nal state or to a state from which a �nal state canbe reached (4.2). Essentially this is the coaccessibilityhypothesis in [18].3

4.2 De�nition. Let I be an interpretation, p bean (n+ r+n)-ary predicate symbol (denoting our planttransition relation) and end be an n-ary predicate sym-bol (denoting our set of �nal states).� BR(p; end) = ([q(x) = (end(x) _ 9u;x0(p(x;u;x0) ^ q(x0)))], q). Informally q denotes the setof plant states that are �nal or from which it is possibleto reach a �nal state (backward reachable states).� Let BR(p; end) = (Q; q). The triple (I; p; end)is said to be backward reachable i� (I [stdsol(I;Q)) j=p(x;u;x0) ! q(x0). Informally a triple (I; p; end) isbackward reachable i� each plant transition leads to abackward reachable state. 24.3 De�nition. An Optimal Finite State Su-pervisory Control Problem (just Optimal SupervisoryControl Problem, OSCP, in the following) is a 10-tuple(P; J; p; end; contr; leq;h; lh; j; f) s.t.:� P is a program s.t. predicates p, end, contr, leq,h, lh are in P , stdsol(P) #, j, f are not in P .� p is an (n + r + n)-ary predicate symbol denot-ing our plant transition relation. Informally p(x;u;x0)holds i� event u triggers a transition from state x tostate x0.� end is an n-ary predicate symbol denoting ourset of �nal states. Informally end(x) holds i� x denotesa �nal state.� The triple (stdsol(P); p; end) is backward reach-able. I.e. each plant transition leads to a backwardreachable state (equivalently: each nonisolated state isbackward reachable).� contr is an r-ary predicate symbol denoting ourset of controllable plant events. Informally contr(u)holds i� u denotes a controllable event.� leq is a (2k)-ary predicate symbol denoting a totalorder on costs. We write (v � v0) for leq(v;v0). Pre-dicate leq satis�es the following conditions (total order):stdsol(P) j= (v � v),stdsol(P) j= ((v1 � v2) ^ (v2 � v1))! (v1 = v2),stdsol(P) j= ((v1 � v2) ^ (v2 � v3))! (v1 � v3),stdsol(P) j= (v1 � v2) _ (v2 � v1).� h � [h0; : : :hk�1] is a vector of (n+r)-ary predic-ate symbols. Vector h(x;u) denotes the cost of enablingevent u in plant state x.� lh � [lh0; : : : lhk�1] is a vector of (2k)-ary pre-dicate symbols denoting our cost propagation function.Informally vector lh(v1;v2) denotes the cost resultingfrom incurring �rst cost v1 and then cost v2. Vector lhsatis�es the following condition (leq-monotonicity):stdsol(P) j= ((v1 � v2) ^ (v4 = lh(v1;v3)) ^ (v5 =lh(v2;v3)))! (v4 � v5).� f is an (n + r)-ary predicate symbol denotingour state feedback supervisory control law. I.e. f(x;u)holds i� when the plant is in state x event u is enabled.� j is an (n+k)-ary predicate symbol denoting ourobjective function (cost index). Informally j(x;v) holdsi� when applying control law f the cost index value inx is v.� J is a module de�ning our objective function j.Module J is de�ned as follows: J = [b(x;v) = 9u;x0 (f(x;u) ^ p(x;u;x0) ^ end(x0)^ (v = h(x;u))) _ 9u;x0 (f(x;u) ^ p(x;u;x0) ^:end(x0) ^ 9v2 (b(x0;v2) ^ 9v1 ((v1 = h(x;u)) ^(v = lh(v1;v2))))),j(x;v) = b(x;v) ^ 8v0 (b(x;v0) ! (v0 � v))].E.g. F as in �g. 3 is an OSCP. 2

F = (P;J; p; end; contr; leq; [h]; [lh]; j; f),x � [x0], u � [u0], s0 � [0], s1 � [1], u0 � [0], u1 � [1].P = [p(x;u;x0) = (x = s0 ^ u = u0 ^ x0 = s1)_(x = s0 ^ u = u1 ^ x0 = s1)_(x = s1 ^ u = u0 ^ x0 = s0)_(x = s1 ^ u = u1 ^ x0 = s1),end(x) = (x = s1),contr(u) = (u = u0),leq(v0; v1) = (v0 ! v1),h(x;u) = (x = s0 ^ u = u1),lh(v0; v1) = (v0 _ v1)].Adm: I1 = ff(s0;u0); f(s0;u1); f(s1;u0); f(s1;u1)g;stdsol(I1; P � J)(j) = fj(s0; 1); j(s1; 1)g.Opt: I2 = ff(s0;u1); f(s1;u1)g;stdsol(I2; P � J)(j) = fj(s0; 1); j(s1; 0)g.Mgo: I3 = ff(s0;u1); f(s0;u0); f(s1;u1)g;stdsol(I3; P � J)(j) = fj(s0; 1); j(s1; 0)g.Figure 3: An OSCP4.4 Remark. � Informally module J in 4.3works as follows. Formula b(x;v) holds i� from statex with control law f we can reach with cost v a �nalstate. Formula j(x;v) holds i� v is the maximum costto reach a �nal state starting from state x when usingcontrol law f . Thus, as in [21], we take as objectivefunction j the worst case performance of supervisor f .� Vector h in 4.3 plays the same role as the Hamilto-nian in a classical optimal control problem for dynamicsystems on <n whereas lh plays the role of cost sum-mation (R or P) along state trajectories.� The leq-monotonicity hypothesis in 4.3 allows usto use Bellman's principle of optimality (e.g. see [8])when constructing a solution to an OSCP (5.1, 5.2).� Note that backward reachability for (stdsol(P), p,end) as well as the conditions on leq and lh in 4.3 can allbe automatically checked using BDDs. E.g. (stdsol(P),p, end) is backward reachable i� Answer Query(P�[q(x) = (end(x) _ 9u;x0 (p(x;u;x0) ^ q(x0))), g(x) =8u;x0 (p(x;u;x0) ! q(x0))], g) = 1. By theorem 3.4this can be evaluated with BDDs.� Note that we use a static (memoryless) state feed-back controller (f). Memory is only in the plant model(p). As in [14], [15] this is no loss of generality sincefrom a computational point of view memory can alwaysbe modelled as part of the plant p. Note that, unlike[18], [5], we allow nondeterministic plants. When thestate is observable (as often the case) this makes ourresults directly applicable to hybrid control for dynamicsystems on <n (e.g. see [4]). When the plant is determ-inistic our approach is equivalent to the one in [18], [5].Note also that all plant states are initial for us. Essen-tially this is equivalent to the accessibility hypothesisin [18] and is no loss of generality when studying SCPs([18]) or OSCPs ([21]). 24.5 De�nition. Let F = (P , J , p, end, contr, leq,h, lh, j, f) be an OSCP. An admissible solution to F isan interpretation I satisfying the following conditions.1. I = I(f). I.e. the only predicate symbol occur-ring in I is f .2. I [stdsol(P) j= (:contr(u)^9x0p(x;u;x0))!f(x;u). I.e. uncontrollable events cannot be disabled.This condition has been called controller completenessin [5], [18].3. I [stdsol(P) j= (contr(u) ^ f(x;u)) !9x0p(x;u;x0). I.e. a controllable event enabled by4

the controller can always be followed (executed) by theplant. This condition has been called plant complete-ness in [5].4. I0 [stdsol(I 0; Q � Q0) j= 9u;x0(p(x;u;x0) ^q(x0)) ! 9u;x0(p0(x;u;x0) ^ q0(x0)), where: I 0 =I [stdsol(I; P � [p0(x;u;x0) = f(x;u) ^ p(x;u;x0)]),BR(p; end) = (Q; q), BR(p0; end) = (Q0; q0). Inform-ally: if in the open-loop (uncontrolled) system p (theplant) there is a transition from state x leading to abackward reachable state then in the closed-loop (con-trolled) system p0 there is a transition from state x lead-ing to a backward reachable state. This liveness hypo-thesis ensures that the controller can drive the plant toa �nal state. This hypothesis plays the same role as thenonblocking condition in [5], [18].E.g. an admissible solution to the OSCP F in �g. 3is I1 in �g. 3. 24.6 De�nition. Let F = (P , J , p, end, contr, leq,h, lh, j, f) be an OSCP. An optimal solution to F isan interpretation I satisfying the following conditions.� I is an admissible solution to F .� For all admissible solutions I 0 to F , for all assign-ments �, �0 we have: if stdsol(I; P �J) j= j(x� ;v�) andstdsol(I 0; P � J) j= j(x� ;v�0) then stdsol(P) j= (v� �v�0).E.g. an optimal solution to the OSCP F in �g. 3 isI2 in �g. 3. 2Informally an optimal solution to an OSCP F is anadmissible solution to F that minimizes F objectivefunction and satis�es the Dynamic Programming (DP)principle.It is possible to show that the above notions (OSCP,admissible solution, optimal solution) are all wellde�ned.Note that for us all states are initial. As pointed outin remark 4.4 this is equivalent to have one initial stateand the accessibility hypothesis which is no loss of gen-erality. Thus our de�nition of optimality is equivalentto the one in [21].In supervisory control we are interested in �nding theleast restrictive supervisor (e.g. see [18], [24], [5], [21]).This leads to the following de�nition.4.7 De�nition. Let F be an OSCP. A most gen-eral optimal solution (mgo solution) to F is an optimalsolution I to F s.t. for all optimal solutions I 0 to Fwe have: I 0 � I. I.e. I is the least restrictive optimalsolution to F . Note that if I1 and I2 are mgo solutionsto F then I1 = I2. Thus if an mgo solution exists itis unique. We also refer to the mgo solution to F asthe Optimal Supervisory Controller (OSC) solving theOSCP F . E.g.: the mgo solution to F in �g. 3 is I3 in�g. 3. 25 Optimal SolutionWe give (5.1) a BFOL program to compute the mgosolution to an OSCP. By 3.4 this gives a symbolic (i.e.BDD based) algorithm for OSC synthesis. Note how (in5.1) BFOL programs allow a clear and succinct de�ni-tion of quite complicated computations. In 5.2 we provethe correctness of our symbolic algorithm. This alsoshows that an OSCP has an mgo solution and thus (afortiori) an optimal solution.

5.1 De�nition. Let F = (P , J , p, end, contr, leq,h, lh, j, f) be an OSCP. We de�ne module mgo(F) asin �g. 4. 2Essentially module mgo(F) de�nes a dynamic pro-gramming algorithmwhich in our BFOL framework be-comes a �xpoint computation.Informallymodulemgo(F) works as follows. Formulabo(x;u;v) holds i� from state x enabling event u we canreach with cost v a �nal state. Formula adm(x;v) holdsi� v is an admissible (w.r.t. 4.5.2) cost to reach a �nalstate from state x. Formula g(x;v) (cost-to-go) holdsi� v is the least admissible cost to reach a �nal statefrom state x. Formula f(x;u) (de�ning our controller)holds i� u is uncontrollable or the cost for enabling uin x is less than or equal to the cost-to-go from state x.Note that mgo(F) is not formally monotone. Thus,in general, the �xpoint computation involved inmgo(F)will not terminate.5.2 Theorem. Let F be an OSCP. Thenstdsol(P �mgo(F))(f) is the mgo solution to F .E.g. let F and I3 be as in �g. 3. Then stdsol(P �mgo(F)) = I3. 25.3 Remark. � By theorem 5.2 and 3.4 given Fwe can compute a BDD representation for f , namely:bdd(P � mgo(F); f). This gives an e�cient synthesisalgorithm for OSCs.� It is possible to give counter-examples to showthe following facts. (1) If we drop the leq-monotonicityhypothesis on lh then there may be no optimal solu-tion to an OSCP F and stdsol(P �mgo(F)) may yieldwrong results. This is the case even when all events arecontrollable. (2) If we drop the leq-monotonicity hypo-thesis on lh then stdsol(P �mgo(F)) may not termin-ate. (3) Leq-monotonicity is only a su�cient conditionfor termination of stdsol(P �mgo(F)). (4) Because ofloops and uncontrollable events representing costs witha large enough word length does not guarantee termin-ation of stdsol(P �mgo(F)). A \global" hypothesis onthe behavior of lh is needed. Leq-monotonicity in 4.3does the job. (5) When costs range on an in�nite do-main (the analogous of) theorem 5.2 fails even when theleq-monotonicity hypothesis is satis�ed.� Note that our plant is as general as it can bein supervisory control theory (e.g. see [18], [5]). Inparticular our OSC synthesis algorithm (5.1) handlesarbitrary sets of �nal states as well as loops and un-controllable events in the plant transition relation. Nopreviously published OSC synthesis algorithm handlessuch general case.� Note that our objective function only depends oncosts for enabled events. Objective functions dependingalso on costs for disabled events have been consideredin [21] for costs ranging on <�0, singleton sets of �nalstates and plants without loops or uncontrollable events.2 6 Experimental ResultsBDDs size strongly depends on the boolean functionsthat we need to represent (e.g. see [7]). Thus, as usualwith BDDs, we need to run experiments to asses per-formances of our algorithm. We implemented (in C) acompiler for BFOL programs. In this section we reporton experimental results using our compiler to synthesizeOSCs using the symbolic algorithm in 5.1.5

mgo(F) = [bo(x;u;v) = (9x0(p(x;u;x0) ^ end(x0)) ^ (v = h(x;u))) _ 9x0(p(x;u;x0) ^ :end(x0)^9v2(g(x0;v2) ^ 9v1((v1 = h(x;u))^ (v = lh(v1;v2))))),adm(x;v) = 9ubo(x;u;v)^ 8u;v0((bo(x;u;v0) ^ :contr(u))! (v0 � v)),g(x;v) = adm(x;v) ^ 8v0(adm(x;v0)! (v � v0)),f(x;u) = :contr(u)_ 9v(bo(x;u;v)^ 9v0(g(x;v0) ^ (v � v0))].Figure 4:Grid size Cost bits (k in 4.1) State bits (n in 4.1) State Space Size CPU (min) Max BDD OSC C lines2� 2 3 10 1024 2:45 220,418 87 1804� 4 5 14 16384 249:21 1,400,032 339 900Figure 5: Experimental Results on SUN Sparc Station 20 with 64MB of RAMOur plant is formed by an m � m grid with twoautonomous vehicles (AVs) moving on it. Each AV canstay where it is or can move forward, backward, left orright. Failures can occur.Our goal is to �nd the OSC f s.t.: f satis�es givensafety constraints, f drives each AV to a given gridregion, f minimizes the fuel used to �nish the job (bothAVs have reached their destinations).Fig. 5 reports our experimental results. We use 6bits to represent events (i.e. r in 4.1 is 6). Column`Max BDD' gives the size of the larger BDD built dur-ing the computation. Column `OSC' gives the size ofthe BDD representing OSC f . From such BDD ourtool can automatically generate a C program, say C(f),implementing OSC f . C(f) closely follows the BDDrepresentation of f . Thus C(f) runs in time linear inthe number of arguments of f , i.e. in this case O(n+r).Column `C lines' reports the number of lines of C(f).If we assume for the running time of our OSC syn-thesis algorithm (5.1) an expression of form �s� , wheres is the size of the state space (i.e. s = 2n) from the tablein �g. 5 we get a running time of 35 � 10�6 � s1:63. Notethat this is better than the running time of O(s2 log s)for the algorithm in [21].7 ConclusionsWe addressed the problem (OSCP) of automatic syn-thesis of Optimal Finite State Supervisory Controllers(OSCs). Our results (summarized in sec. 1) show that,although OSC synthesis is computationally harder thanSC synthesis or automatic veri�cation (Model Check-ing), using BFOL programs and BDDs automatic syn-thesis of OSCs is possible for small size plants.To design OSC synthesis algorithms for larger plantsis the next step for our research.References[1] A. Aziz, F. Balarin, R. K. Brayton, M. D. DiBenedetto,A. Saldanha, A. L. Sangiovanni-Vincentelli, SupervisoryControl of Finite State Machines, CAV 95, LNCS 939,Springer-Verlag[2] A. Anuchitanukul, Z. Manna, Realizability and Synthesisof Reactive Modules, CAV 94, LNCS 818, Springer-Verlag[3] K. R. Apt, Logic Programming, Handbook of TheoreticalComputer Science, Elsevier 1990[4] P. J. Antsaklis, J. A. Stiver, M. Lemmon, Hybrid Sys-tem Modeling and Autonomous Control Systems, HybridSystems, LNCS 736, Springer-Verlag, 1993[5] S. Balemi, G. J. Ho�mann, P. Gyugyi, H. Wong-Toi,G. F. Franklin, Supervisory Control of a Rapid ThermalMultiprocessor, IEEE Trans. on Automatic Control, Vol.38, N. 7, July 1993

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,L. J. Hwang, Symbolic model checking: 1020 states andbeyond, Information and Computation 98, (1992)[7] R. Bryant, Graph-Based Algorithms for Boolean Func-tion Manipulation, IEEE Transaction on Computers,Vol. C-35, N.8, Aug. 1986[8] L.C. Cooper, M. W. Cooper, Introduction to DynamicProgramming, Pergamon Press, 1981[9] E. A. Emerson, Temporal and Modal Logic, Handbookof Theoretical Computer Science, Elsevier 1990[10] R. Kumar, V. Garg, S. I. Marcus, Predicates and Pre-dicate Transformers for Supervisory Control of DiscreteEvent Dynamical Systems, IEEE Trans. on AutomaticControl, Vol. 38, N.2, 1993[11] B. Jonsson, K. G. Larsen, On the complexity of EquationSolving in Process Algebra, TAP-SOFT 91, LNCS 493,1991, Springer-Verlag[12] J. W. Lloyd, Foundations of Logic Programming,Springer-Verlag, 1987[13] M. Lemmon, J. A. Stiver, P. J. Antsaklis, Event Identi-�cation and Intelligent Hybrid Control, Hybrid Systems,LNCS 736, Springer-Verlag, 1993[14] Y. Li, W. M. Wonham, Control of Vector Discrete-EventSystems I|The Base Model, IEEE Trans. on AutomaticControl, Vol. 38, N.8, 1993[15] Y. Li, W. M. Wonham, Control of Vector Discrete-EventSystems II|Controller Synthesis, IEEE Trans. on Auto-matic Control, Vol. 39, N.3, 1994[16] K. M. Passino, P. J. Antsaklis, On the Optimal Con-trol of Discrete Event Systems, Proc. 28th IEEE Conf.Decision and Control, 1989[17] J. Parrow, Submodule Construction as Equation Solvingin CCS, Theor. Computer Science, 68, Elsevier 1989[18] P. J. Ramadge, W. M. Wonham, Supervisory Control ofa Class of Discrete Event Processes, SIAM J. Controland Optimization, Vol. 25, N. 1, Jan. 1987[19] P. J. Ramadge, W. M. Wonham, Modular Feedback Lo-gic for Discrete Event Systems, SIAM J. Control andOptimization, Vol. 25, N. 5, pp. 1202-1218, 1987[20] P. J. Ramadge, W. M. Wonham, The Control of DiscreteEvent Systems, Proceedings of the IEEE, 77(1):81-98,Jan. 1989,[21] R. Sengupta, S. Lafortune, A Graph-Theoretic OptimalControl Problem for Terminating Discrete Event Pro-cesses, Discrete Event Dynamic Systems: Theory andApplications 2, (1992): 139{172, Kluwer[22] E. Tronci, Hardware Veri�cation, Boolean Logic Pro-gramming, Boolean Functional Programming, LICS1995, IEEE Computer Society, 1995[23] M. Y. Vardi, An Automata-Theoretic Approach toFair Realizability and Synthesis, CAV 95, LNCS 939,Springer-Verlag[24] W. M. Wonham, P. J. Ramadge, On the Supremal Con-trollable Sublanguage of a given Language, SIAM J. Con-trol and Optimization, Vol. 25, N. 1, Jan. 19876

