toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico url  openurl
  Title From Boolean Functional Equations to Control Software Type Report
  Year 2011 Publication Abbreviated Journal  
  Volume abs/1106.0468 Issue Pages  
  Keywords  
  Abstract (up) Many software as well digital hardware automatic synthesis methods define the set of implementations meeting the given system specifications with a boolean relation K. In such a context a fundamental step in the software (hardware) synthesis process is finding effective solutions to the functional equation defined by K. This entails finding a (set of) boolean function(s) F (typically represented using OBDDs, Ordered Binary Decision Diagrams) such that: 1) for all x for which K is satisfiable, K(x, F(x)) = 1 holds; 2) the implementation of F is efficient with respect to given implementation parameters such as code size or execution time. While this problem has been widely studied in digital hardware synthesis, little has been done in a software synthesis context. Unfortunately the approaches developed for hardware synthesis cannot be directly used in a software context. This motivates investigation of effective methods to solve the above problem when F has to be implemented with software. In this paper we present an algorithm that, from an OBDD representation for K, generates a C code implementation for F that has the same size as the OBDD for F and a WCET (Worst Case Execution Time) at most O(nr), being n = |x| the number of arguments of functions in F and r the number of functions in F.  
  Address  
  Corporate Author Thesis  
  Publisher CoRR, Technical Report Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Serial 105  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico pdf  url
openurl 
  Title From Boolean Relations to Control Software Type Conference Article
  Year 2011 Publication Proceedings of ICSEA 2011, The Sixth International Conference on Software Engineering Advances Abbreviated Journal  
  Volume Issue Pages 528-533  
  Keywords  
  Abstract (up) Many software as well digital hardware automatic synthesis methods define the set of implementations meeting the given system specifications with a boolean relation K. In such a context a fundamental step in the software (hardware) synthesis process is finding effective solutions to the functional equation defined by K. This entails finding a (set of) boolean function(s) F (typically represented using OBDDs, Ordered Binary Decision Diagrams) such that: 1) for all x for which K is satisfiable, K(x, F(x)) = 1 holds; 2) the implementation of F is efficient with respect to given implementation parameters such as code size or execution time. While this problem has been widely studied in digital hardware synthesis, little has been done in a software synthesis context. Unfortunately the approaches developed for hardware synthesis cannot be directly used in a software context. This motivates investigation of effective methods to solve the above problem when F has to be implemented with software. In this paper we present an algorithm that, from an OBDD representation for K, generates a C code implementation for F that has the same size as the OBDD for F and a WCET (Worst Case Execution Time) linear in nr, being n = |x| the number of input arguments for functions in F and r the number of functions in F.  
  Address  
  Corporate Author Thesis  
  Publisher ThinkMind Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-61208-165-6 ISBN Medium  
  Area Expedition Conference  
  Notes Best Paper Award Approved yes  
  Call Number Sapienza @ mari @ icsea11 Serial 14  
Permanent link to this record
 

 
Author Alimguzhin, V.; Mari, F.; Melatti, I.; Salvo, I.; Tronci, E. pdf  doi
openurl 
  Title Linearising Discrete Time Hybrid Systems Type Journal Article
  Year 2017 Publication IEEE Transactions on Automatic Control Abbreviated Journal  
  Volume 62 Issue 10 Pages 5357-5364  
  Keywords  
  Abstract (up) Model Based Design approaches for embedded systems aim at generating correct-by-construction control software, guaranteeing that the closed loop system (controller and plant) meets given system level formal specifications. This technical note addresses control synthesis for safety and reachability properties of possibly non-linear discrete time hybrid systems. By means of syntactical transformations that require non-linear terms to be Lipschitz continuous functions, we over-approximate non-linear dynamics with a linear system whose controllers are guaranteed to be controllers of the original system. We evaluate performance of our approach on meaningful control synthesis benchmarks, also comparing it to a state-of-the-art tool.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9286 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Sapienza @ mari @ ref7902199 Serial 164  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico pdf  url
openurl 
  Title Linear Constraints and Guarded Predicates as a Modeling Language for Discrete Time Hybrid Systems Type Journal Article
  Year 2013 Publication International Journal on Advances in Software Abbreviated Journal Intern. Journal on Advances in SW  
  Volume vol. 6, nr 1&2 Issue Pages 155-169  
  Keywords Model-based software design; Linear predicates; Hybrid systems  
  Abstract (up) Model based design is particularly appealing in
software based control systems (e.g., embedded
software) design, since in such a case system
level specifications are much easier to define
than the control software behavior itself. In
turn, model based design of embedded systems
requires modeling both continuous subsystems
(typically, the plant) as well as discrete
subsystems (the controller). This is typically
done using hybrid systems. Mixed Integer Linear
Programming (MILP) based abstraction techniques
have been successfully applied to automatically
synthesize correct-by-construction control
software for discrete time linear hybrid systems,
where plant dynamics is modeled as a linear
predicate over state, input, and next state
variables. Unfortunately, MILP solvers require
such linear predicates to be conjunctions of
linear constraints, which is not a natural way of
modeling hybrid systems. In this paper we show
that, under the hypothesis that each variable
ranges over a bounded interval, any linear
predicate built upon conjunction and disjunction
of linear constraints can be automatically
translated into an equivalent conjunctive
predicate. Since variable bounds play a key role
in this translation, our algorithm includes a
procedure to compute all implicit variable bounds
of the given linear predicate. Furthermore, we
show that a particular form of linear predicates,
namely guarded predicates, are a natural and
powerful language to succinctly model discrete
time linear hybrid systems dynamics. Finally, we
experimentally show the feasibility of our
approach on an important and challenging case
study taken from the literature, namely the
multi-input Buck DC-DC Converter. As an example,
the guarded predicate that models (with 57
constraints) a 6-inputs Buck DC-DC Converter is
translated in a conjunctive predicate (with 102
linear constraints) in about 40 minutes.
 
  Address  
  Corporate Author Thesis  
  Publisher IARIA Place of Publication Editor Luigi Lavazza  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-2628 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ melatti @ Serial 115  
Permanent link to this record
 

 
Author Melatti, Igor; Palmer, Robert; Sawaya, Geoffrey; Yang, Yu; Kirby, Robert Mike; Gopalakrishnan, Ganesh pdf  doi
isbn  openurl
  Title Parallel and Distributed Model Checking in Eddy Type Conference Article
  Year 2006 Publication Model Checking Software, 13th International SPIN Workshop, Vienna, Austria, March 30 – April 1, 2006, Proceedings Abbreviated Journal  
  Volume Issue Pages 108-125  
  Keywords  
  Abstract (up) Model checking of safety properties can be scaled up by pooling the CPU and memory resources of multiple computers. As compute clusters containing 100s of nodes, with each node realized using multi-core (e.g., 2) CPUs will be widespread, a model checker based on the parallel (shared memory) and distributed (message passing) paradigms will more efficiently use the hardware resources. Such a model checker can be designed by having each node employ two shared memory threads that run on the (typically) two CPUs of a node, with one thread responsible for state generation, and the other for efficient communication, including (i) performing overlapped asynchronous message passing, and (ii) aggregating the states to be sent into larger chunks in order to improve communication network utilization. We present the design details of such a novel model checking architecture called Eddy. We describe the design rationale, details of how the threads interact and yield control, exchange messages, as well as detect termination. We have realized an instance of this architecture for the Murphi modeling language. Called Eddy_Murphi, we report its performance over the number of nodes as well as communication parameters such as those controlling state aggregation. Nearly linear reduction of compute time with increasing number of nodes is observed. Our thread task partition is done in such a way that it is modular, easy to port across different modeling languages, and easy to tune across a variety of platforms.  
  Address  
  Corporate Author Thesis  
  Publisher Springer - Verlag Place of Publication Editor Valmari, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 3925 Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-540-33102-5 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Mpsykg06 Serial 81  
Permanent link to this record
 

 
Author Melatti, Igor; Palmer, Robert; Sawaya, Geoffrey; Yang, Yu; Kirby, Robert Mike; Gopalakrishnan, Ganesh pdf  doi
openurl 
  Title Parallel and distributed model checking in Eddy Type Journal Article
  Year 2009 Publication Int. J. Softw. Tools Technol. Transf. Abbreviated Journal  
  Volume 11 Issue 1 Pages 13-25  
  Keywords  
  Abstract (up) Model checking of safety properties can be scaled up by pooling the CPU and memory resources of multiple computers. As compute clusters containing 100s of nodes, with each node realized using multi-core (e.g., 2) CPUs will be widespread, a model checker based on the parallel (shared memory) and distributed (message passing) paradigms will more efficiently use the hardware resources. Such a model checker can be designed by having each node employ two shared memory threads that run on the (typically) two CPUs of a node, with one thread responsible for state generation, and the other for efficient communication, including (1) performing overlapped asynchronous message passing, and (2) aggregating the states to be sent into larger chunks in order to improve communication network utilization. We present the design details of such a novel model checking architecture called Eddy. We describe the design rationale, details of how the threads interact and yield control, exchange messages, as well as detect termination. We have realized an instance of this architecture for the Murphi modeling language. Called Eddy_Murphi, we report its performance over the number of nodes as well as communication parameters such as those controlling state aggregation. Nearly linear reduction of compute time with increasing number of nodes is observed. Our thread task partition is done in such a way that it is modular, easy to port across different modeling languages, and easy to tune across a variety of platforms.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Berlin, Heidelberg Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2779 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Mpsykg09 Serial 80  
Permanent link to this record
 

 
Author Mancini, T.; Melatti, I.; Tronci, E. pdf  doi
openurl 
  Title Any-horizon uniform random sampling and enumeration of constrained scenarios for simulation-based formal verification Type Journal Article
  Year 2021 Publication IEEE Transactions on Software Engineering Abbreviated Journal  
  Volume Issue Pages 1-1  
  Keywords  
  Abstract (up) Model-based approaches to the verification of non-terminating Cyber-Physical Systems (CPSs) usually rely on numerical simulation of the System Under Verification (SUV) model under input scenarios of possibly varying duration, chosen among those satisfying given constraints. Such constraints typically stem from requirements (or assumptions) on the SUV inputs and its operational environment as well as from the enforcement of additional conditions aiming at, e.g., prioritising the (often extremely long) verification activity, by, e.g., focusing on scenarios explicitly exercising selected requirements, or avoiding </i>vacuity</i> in their satisfaction. In this setting, the possibility to efficiently sample at random (with a known distribution, e.g., uniformly) within, or to efficiently enumerate (possibly in a uniformly random order) scenarios among those satisfying all the given constraints is a key enabler for the practical viability of the verification process, e.g., via simulation-based statistical model checking. Unfortunately, in case of non-trivial combinations of constraints, iterative approaches like Markovian random walks in the space of sequences of inputs in general fail in extracting scenarios according to a given distribution (e.g., uniformly), and can be very inefficient to produce at all scenarios that are both legal (with respect to SUV assumptions) and of interest (with respect to the additional constraints). For example, in our case studies, up to 91% of the scenarios generated using such iterative approaches would need to be neglected. In this article, we show how, given a set of constraints on the input scenarios succinctly defined by multiple finite memory monitors, a data structure (scenario generator) can be synthesised, from which any-horizon scenarios satisfying the input constraints can be efficiently extracted by (possibly uniform) random sampling or (randomised) enumeration. Our approach enables seamless support to virtually all simulation-based approaches to CPS verification, ranging from simple random testing to statistical model checking and formal (i.e., exhaustive) verification, when a suitable bound on the horizon or an iterative horizon enlargement strategy is defined, as in the spirit of bounded model checking.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1939-3520 ISBN Medium  
  Area Expedition Conference  
  Notes To appear Approved no  
  Call Number MCLab @ davi @ ref9527998 Serial 191  
Permanent link to this record
 

 
Author Brizzolari, Francesco; Melatti, Igor; Tronci, Enrico; Della Penna, Giuseppe pdf  doi
openurl 
  Title Disk Based Software Verification via Bounded Model Checking Type Conference Article
  Year 2007 Publication APSEC '07: Proceedings of the 14th Asia-Pacific Software Engineering Conference Abbreviated Journal  
  Volume Issue Pages 358-365  
  Keywords  
  Abstract (up) One of the most successful approach to automatic software verification is SAT based bounded model checking (BMC). One of the main factors limiting the size of programs that can be automatically verified via BMC is the huge number of clauses that the backend SAT solver has to process. In fact, because of this, the SAT solver may easily run out of RAM. We present two disk based algorithms that can considerably decrease the number of clauses that a BMC backend SAT solver has to process in RAM. Our experimental results show that using our disk based algorithms we can automatically verify programs that are out of reach for RAM based BMC.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Computer Society Place of Publication Washington, DC, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0-7695-3057-5 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Bmtd07 Serial 76  
Permanent link to this record
 

 
Author Mazzini, Silvia; Puri, Stefano; Mari, Federico; Melatti, Igor; Tronci, Enrico pdf  openurl
  Title Formal Verification at System Level Type Conference Article
  Year 2009 Publication In: DAta Systems In Aerospace (DASIA), Org. EuroSpace, Canadian Space Agency, CNES, ESA, EUMETSAT. Instanbul, Turkey, EuroSpace Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) System Level Analysis calls for a language comprehensible to experts with different background and yet precise enough to support meaningful analyses. SysML is emerging as an effective balance between such conflicting goals. In this paper we outline some the results obtained as for SysML based system level functional formal verification by an ESA/ESTEC study, with a collaboration among INTECS and La Sapienza University of Roma. The study focuses on SysML based system level functional requirements techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Dasia09 Serial 20  
Permanent link to this record
 

 
Author Bobbio, Andrea; Ciancamerla, Ester; Di Blasi, Saverio; Iacomini, Alessandro; Mari, Federico; Melatti, Igor; Minichino, Michele; Scarlatti, Alessandro; Tronci, Enrico; Terruggia, Roberta; Zendri, Emilio pdf  doi
openurl 
  Title Risk analysis via heterogeneous models of SCADA interconnecting Power Grids and Telco networks Type Conference Article
  Year 2009 Publication Proceedings of Fourth International Conference on Risks and Security of Internet and Systems (CRiSIS) Abbreviated Journal  
  Volume Issue Pages 90-97  
  Keywords  
  Abstract (up) The automation of power grids by means of supervisory control and data acquisition (SCADA) systems has led to an improvement of power grid operations and functionalities but also to pervasive cyber interdependencies between power grids and telecommunication networks. Many power grid services are increasingly depending upon the adequate functionality of SCADA system which in turn strictly depends on the adequate functionality of its communication infrastructure. We propose to tackle the SCADA risk analysis by means of different and heterogeneous modeling techniques and software tools. We demonstrate the applicability of our approach through a case study on an actual SCADA system for an electrical power distribution grid. The modeling techniques we discuss aim at providing a probabilistic dependability analysis, followed by a worst case analysis in presence of malicious attacks and a real-time performance evaluation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Fourth International Conference on Risks and Security of Internet and Systems (CRiSIS)  
  Notes Approved yes  
  Call Number Sapienza @ mari @ crisis09 Serial 17  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: