|   | 
Details
   web
Records
Author Mancini, Toni; Mari, Federico; Massini, Annalisa; Melatti, Igor; Merli, Fabio; Tronci, Enrico
Title System Level Formal Verification via Model Checking Driven Simulation Type Conference Article
Year 2013 Publication Proceedings of the 25th International Conference on Computer Aided Verification. July 13-19, 2013, Saint Petersburg, Russia Abbreviated Journal CAV 2013
Volume Issue (up) Pages 296-312
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Springer - Verlag Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 8044 Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-39798-1 Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Serial 113
Permanent link to this record
 

 
Author Alimguzhin, Vadim; Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title A Map-Reduce Parallel Approach to Automatic Synthesis of Control Software Type Conference Article
Year 2013 Publication Proc. of International SPIN Symposium on Model Checking of Software (SPIN 2013) Abbreviated Journal International SPIN Symposium on Model Checking of Software
Volume Issue (up) Pages 43-60
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Springer - Verlag Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 7976 Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-39175-0 Medium
Area Expedition Conference
Notes Approved no
Call Number Sapienza @ melatti @ Serial 112
Permanent link to this record
 

 
Author Alimguzhin, Vadim; Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title On-the-Fly Control Software Synthesis Type Conference Article
Year 2013 Publication Proceedings of International SPIN Symposium on Model Checking of Software (SPIN 2013) Abbreviated Journal International SPIN Symposium on Model Checking of Software
Volume Issue (up) Pages 61-80
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Springer - Verlag Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 7976 Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-39175-0 Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ melatti @ Serial 111
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title Synthesizing Control Software from Boolean Relations Type Journal Article
Year 2012 Publication International Journal on Advances in Software Abbreviated Journal Intern. Journal on Advances in SW
Volume vol. 5, nr 3&4 Issue (up) Pages 212-223
Keywords Control Software Synthesis; Embedded Systems; Model Checking
Abstract Many software as well digital hardware automatic
synthesis methods define the set of
implementations meeting the given system
specifications with a boolean relation K. In
such a context a fundamental step in the software
(hardware) synthesis process is finding effective
solutions to the functional equation defined by
K. This entails finding a (set of) boolean
function(s) F (typically represented using
OBDDs, Ordered Binary Decision Diagrams)
such that: 1) for all x for which K is
satisfiable, K(x, F(x)) = 1 holds; 2) the
implementation of F is efficient with respect
to given implementation parameters such as code
size or execution time. While this problem has
been widely studied in digital hardware synthesis,
little has been done in a software synthesis
context. Unfortunately, the approaches developed
for hardware synthesis cannot be directly used in
a software context. This motivates investigation
of effective methods to solve the above problem
when F has to be implemented with software. In
this paper, we present an algorithm that, from an
OBDD representation for K, generates a C code
implementation for F that has the same size as
the OBDD for F and a worst case execution time
linear in nr, being n = |x| the number of
input arguments for functions in F and r the
number of functions in F. Moreover, a formal
proof of the proposed algorithm correctness is
also shown. Finally, we present experimental
results showing effectiveness of the proposed
algorithm.
Address
Corporate Author Thesis
Publisher IARIA Place of Publication Editor Luigi Lavazza
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1942-2628 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ melatti @ Serial 108
Permanent link to this record
 

 
Author Kuijpers, Ed; Carotenuto, Luigi; Malapert, Jean-Cristophe; Markov-Vetter, Daniela; Melatti, Igor; Orlandini, Andrea; Pinchuk, Ranni
Title Collaboration on ISS Experiment Data and Knowledge Representation Type Conference Article
Year 2012 Publication Proc. of IAC 2012 Abbreviated Journal
Volume D.5.11 Issue (up) Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ melatti @ Serial 107
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title Quantized Feedback Control Software Synthesis from System Level Formal Specifications for Buck DC/DC Converters Type Report
Year 2011 Publication Abbreviated Journal
Volume abs/1105.5640 Issue (up) Pages
Keywords
Abstract Many Embedded Systems are indeed Software Based Control Systems (SBCSs), that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of SBCS control software. In previous works we presented an algorithm, along with a tool QKS implementing it, that from a formal model (as a Discrete Time Linear Hybrid System, DTLHS) of the controlled system (plant), implementation specifications (that is, number of bits in the Analog-to-Digital, AD, conversion) and System Level Formal Specifications (that is, safety and liveness requirements for the closed loop system) returns correct-by-construction control software that has a Worst Case Execution Time (WCET) linear in the number of AD bits and meets the given specifications. In this technical report we present full experimental results on using it to synthesize control software for two versions of buck DC-DC converters (single-input and multi-input), a widely used mixed-mode analog circuit.
Address
Corporate Author Thesis
Publisher CoRR, Technical Report Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Serial 106
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title From Boolean Functional Equations to Control Software Type Report
Year 2011 Publication Abbreviated Journal
Volume abs/1106.0468 Issue (up) Pages
Keywords
Abstract Many software as well digital hardware automatic synthesis methods define the set of implementations meeting the given system specifications with a boolean relation K. In such a context a fundamental step in the software (hardware) synthesis process is finding effective solutions to the functional equation defined by K. This entails finding a (set of) boolean function(s) F (typically represented using OBDDs, Ordered Binary Decision Diagrams) such that: 1) for all x for which K is satisfiable, K(x, F(x)) = 1 holds; 2) the implementation of F is efficient with respect to given implementation parameters such as code size or execution time. While this problem has been widely studied in digital hardware synthesis, little has been done in a software synthesis context. Unfortunately the approaches developed for hardware synthesis cannot be directly used in a software context. This motivates investigation of effective methods to solve the above problem when F has to be implemented with software. In this paper we present an algorithm that, from an OBDD representation for K, generates a C code implementation for F that has the same size as the OBDD for F and a WCET (Worst Case Execution Time) at most O(nr), being n = |x| the number of arguments of functions in F and r the number of functions in F.
Address
Corporate Author Thesis
Publisher CoRR, Technical Report Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Serial 105
Permanent link to this record
 

 
Author Mancini, T.; Mari, F.; Melatti, I.; Salvo, I.; Tronci, E.; Gruber, J.K.; Hayes, B.; Prodanovic, M.; Elmegaard, L.
Title User Flexibility Aware Price Policy Synthesis for Smart Grids Type Conference Article
Year 2015 Publication Digital System Design (DSD), 2015 Euromicro Conference on Abbreviated Journal
Volume Issue (up) Pages 478-485
Keywords Contracts; Current measurement; Load management; Power demand; Power measurement; State estimation; Substations; Grid State Estimation; Peak Shaving; Policy Robustness Verification; Price Policy Synthesis
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Sapienza @ preissler @ Mancini_etal2015_3 Serial 136
Permanent link to this record
 

 
Author Mancini, T.; Melatti, I.; Tronci, E.
Title Any-horizon uniform random sampling and enumeration of constrained scenarios for simulation-based formal verification Type Journal Article
Year 2021 Publication IEEE Transactions on Software Engineering Abbreviated Journal
Volume Issue (up) Pages 1-1
Keywords
Abstract Model-based approaches to the verification of non-terminating Cyber-Physical Systems (CPSs) usually rely on numerical simulation of the System Under Verification (SUV) model under input scenarios of possibly varying duration, chosen among those satisfying given constraints. Such constraints typically stem from requirements (or assumptions) on the SUV inputs and its operational environment as well as from the enforcement of additional conditions aiming at, e.g., prioritising the (often extremely long) verification activity, by, e.g., focusing on scenarios explicitly exercising selected requirements, or avoiding </i>vacuity</i> in their satisfaction. In this setting, the possibility to efficiently sample at random (with a known distribution, e.g., uniformly) within, or to efficiently enumerate (possibly in a uniformly random order) scenarios among those satisfying all the given constraints is a key enabler for the practical viability of the verification process, e.g., via simulation-based statistical model checking. Unfortunately, in case of non-trivial combinations of constraints, iterative approaches like Markovian random walks in the space of sequences of inputs in general fail in extracting scenarios according to a given distribution (e.g., uniformly), and can be very inefficient to produce at all scenarios that are both legal (with respect to SUV assumptions) and of interest (with respect to the additional constraints). For example, in our case studies, up to 91% of the scenarios generated using such iterative approaches would need to be neglected. In this article, we show how, given a set of constraints on the input scenarios succinctly defined by multiple finite memory monitors, a data structure (scenario generator) can be synthesised, from which any-horizon scenarios satisfying the input constraints can be efficiently extracted by (possibly uniform) random sampling or (randomised) enumeration. Our approach enables seamless support to virtually all simulation-based approaches to CPS verification, ranging from simple random testing to statistical model checking and formal (i.e., exhaustive) verification, when a suitable bound on the horizon or an iterative horizon enlargement strategy is defined, as in the spirit of bounded model checking.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1939-3520 ISBN Medium
Area Expedition Conference
Notes To appear Approved no
Call Number MCLab @ davi @ ref9527998 Serial 191
Permanent link to this record
 

 
Author Melatti, I.; Mari, F.; Mancini, T.; Prodanovic, M.; Tronci, E.
Title A Two-Layer Near-Optimal Strategy for Substation Constraint Management via Home Batteries Type Journal Article
Year 2021 Publication IEEE Transactions on Industrial Electronics Abbreviated Journal
Volume Issue (up) Pages 1-1
Keywords
Abstract Within electrical distribution networks, substation constraints management requires that aggregated power demand from residential users is kept within suitable bounds. Efficiency of substation constraints management can be measured as the reduction of constraints violations w.r.t. unmanaged demand. Home batteries hold the promise of enabling efficient and user-oblivious substation constraints management. Centralized control of home batteries would achieve optimal efficiency. However, it is hardly acceptable by users, since service providers (e.g., utilities or aggregators) would directly control batteries at user premises. Unfortunately, devising efficient hierarchical control strategies, thus overcoming the above problem, is far from easy. We present a novel two-layer control strategy for home batteries that avoids direct control of home devices by the service provider and at the same time yields near-optimal substation constraints management efficiency. Our simulation results on field data from 62 households in Denmark show that the substation constraints management efficiency achieved with our approach is at least 82% of the one obtained with a theoretical optimal centralized strategy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes To appear Approved no
Call Number MCLab @ davi @ ref9513535 Serial 190
Permanent link to this record