toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tronci, Enrico pdf  doi
openurl 
  Title Equational Programming in lambda-calculus Type Conference Article
  Year 1991 Publication Sixth Annual IEEE Symposium on Logic in Computer Science (LICS) Abbreviated Journal  
  Volume Issue (down) Pages 191-202  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Computer Society Place of Publication Amsterdam, The Netherlands Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ lics91 Serial 58  
Permanent link to this record
 

 
Author Bobbio, Andrea; Bologna, Sandro; Minichino, Michele; Ciancamerla, Ester; Incalcaterra, Piero; Kropp, Corrado; Tronci, Enrico pdf  url
openurl 
  Title Advanced techniques for safety analysis applied to the gas turbine control system of Icaro co generative plant Type Conference Article
  Year 2001 Publication X Convegno Tecnologie e Sistemi Energetici Complessi Abbreviated Journal  
  Volume Issue (down) Pages 339-350  
  Keywords  
  Abstract The paper describes two complementary and integrable approaches, a probabilistic one and a deterministic one, based on classic and advanced modelling techniques for safety analysis of complex computer based systems. The probabilistic approach is based on classical and innovative probabilistic analysis methods. The deterministic approach is based on formal verification methods. Such approaches are applied to the gas turbine control system of ICARO co generative plant, in operation at ENEA CR Casaccia. The main difference between the two approaches, behind the underlining different theories, is that the probabilistic one addresses the control system by itself, as the set of sensors, processing units and actuators, while the deterministic one also includes the behaviour of the equipment under control which interacts with the control system. The final aim of the research, documented in this paper, is to explore an innovative method which put the probabilistic and deterministic approaches in a strong relation to overcome the drawbacks of their isolated, selective and fragmented use which can lead to inconsistencies in the evaluation results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Genova, Italy Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ tesec01 Serial 65  
Permanent link to this record
 

 
Author Della Penna, Giuseppe; Intrigila, Benedetto; Melatti, Igor; Tronci, Enrico; Venturini Zilli, Marisa pdf  doi
openurl 
  Title Bounded Probabilistic Model Checking with the Mur$\varphi$ Verifier Type Conference Article
  Year 2004 Publication Formal Methods in Computer-Aided Design, 5th International Conference, FMCAD 2004, Austin, Texas, USA, November 15-17, 2004, Proceedings Abbreviated Journal  
  Volume Issue (down) Pages 214-229  
  Keywords  
  Abstract In this paper we present an explicit verification algorithm for Probabilistic Systems defining discrete time/finite state Markov Chains. We restrict ourselves to verification of Bounded PCTL formulas (BPCTL), that is, PCTL formulas in which all Until operators are bounded, possibly with different bounds. This means that we consider only paths (system runs) of bounded length. Given a Markov Chain $\cal M$ and a BPCTL formula Φ, our algorithm checks if Φ is satisfied in $\cal M$. This allows to verify important properties, such as reliability in Discrete Time Hybrid Systems. We present an implementation of our algorithm within a suitable extension of the Mur$\varphi$ verifier. We call FHP-Mur$\varphi$ (Finite Horizon Probabilistic Mur$\varphi$) such extension of the Mur$\varphi$ verifier. We give experimental results comparing FHP-Mur$\varphi$ with (a finite horizon subset of) PRISM, a state-of-the-art symbolic model checker for Markov Chains. Our experimental results show that FHP-Mur$\varphi$ can effectively handle verification of BPCTL formulas for systems that are out of reach for PRISM, namely those involving arithmetic operations on the state variables (e.g. hybrid systems).  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Hu, A.J.; Martin, A.K.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 3312 Series Issue Edition  
  ISSN 3-540-23738-0 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Dimtz04 Serial 87  
Permanent link to this record
 

 
Author Della Penna, Giuseppe; Intrigila, Benedetto; Melatti, Igor; Minichino, Michele; Ciancamerla, Ester; Parisse, Andrea; Tronci, Enrico; Venturini Zilli, Marisa pdf  doi
openurl 
  Title Automatic Verification of a Turbogas Control System with the Mur$\varphi$ Verifier Type Conference Article
  Year 2003 Publication Hybrid Systems: Computation and Control, 6th International Workshop, HSCC 2003 Prague, Czech Republic, April 3-5, 2003, Proceedings Abbreviated Journal  
  Volume Issue (down) Pages 141-155  
  Keywords  
  Abstract Automatic analysis of Hybrid Systems poses formidable challenges both from a modeling as well as from a verification point of view. We present a case study on automatic verification of a Turbogas Control System (TCS) using an extended version of the Mur$\varphi$ verifier. TCS is the heart of ICARO, a 2MW Co-generative Electric Power Plant. For large hybrid systems, as TCS is, the modeling effort accounts for a significant part of the whole verification activity. In order to ease our modeling effort we extended the Mur$\varphi$ verifier by importing the C language long double type (finite precision real numbers) into it. We give experimental results on running our extended Mur$\varphi$ on our TCS model. For example using Mur$\varphi$ we were able to compute an admissible range of values for the variation speed of the user demand of electric power to the turbogas.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Maler, O.; Pnueli, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 2623 Series Issue Edition  
  ISSN 3-540-00913-2 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Dimmcptz03 Serial 88  
Permanent link to this record
 

 
Author Della Penna, Giuseppe; Intrigila, Benedetto; Melatti, Igor; Tronci, Enrico; Venturini Zilli, Marisa pdf  doi
openurl 
  Title Finite Horizon Analysis of Stochastic Systems with the Mur$\varphi$ Verifier Type Conference Article
  Year 2003 Publication Theoretical Computer Science, 8th Italian Conference, ICTCS 2003, Bertinoro, Italy, October 13-15, 2003, Proceedings Abbreviated Journal  
  Volume Issue (down) Pages 58-71  
  Keywords  
  Abstract Many reactive systems are actually Stochastic Processes. Automatic analysis of such systems is usually very difficult thus typically one simplifies the analysis task by using simulation or by working on a simplified model (e.g. a Markov Chain). We present a Finite Horizon Probabilistic Model Checking approach which essentially can handle the same class of stochastic processes of a typical simulator. This yields easy modeling of the system to be analyzed together with formal verification capabilities. Our approach is based on a suitable disk based extension of the Mur$\varphi$ verifier. Moreover we present experimental results showing effectiveness of our approach.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Blundo, C.; Laneve, C.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 2841 Series Issue Edition  
  ISSN 3-540-20216-1 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ DIMTZ03c Serial 90  
Permanent link to this record
 

 
Author Mari, Federico; Tronci, Enrico pdf  doi
openurl 
  Title CEGAR Based Bounded Model Checking of Discrete Time Hybrid Systems Type Conference Article
  Year 2007 Publication Hybrid Systems: Computation and Control (HSCC 2007) Abbreviated Journal  
  Volume Issue (down) Pages 399-412  
  Keywords Model Checking, Abstraction, CEGAR, SAT, Hybrid Systems, DTHS  
  Abstract Many hybrid systems can be conveniently modeled as Piecewise Affine Discrete Time Hybrid Systems PA-DTHS. As well known Bounded Model Checking (BMC) for such systems comes down to solve a Mixed Integer Linear Programming (MILP) feasibility problem. We present a SAT based BMC algorithm for automatic verification of PA-DTHSs. Using Counterexample Guided Abstraction Refinement (CEGAR) our algorithm gradually transforms a PA-DTHS verification problem into larger and larger SAT problems. Our experimental results show that our approach can handle PA-DTHSs that are more then 50 times larger than those that can be handled using a MILP solver.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Bemporad, A.; Bicchi, A.; Buttazzo, G.C.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 4416 Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ MarTro07 Serial 92  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: