|   | 
Details
   web
Records
Author Bobbio, Andrea; Ciancamerla, Ester; Di Blasi, Saverio; Iacomini, Alessandro; Mari, Federico; Melatti, Igor; Minichino, Michele; Scarlatti, Alessandro; Tronci, Enrico; Terruggia, Roberta; Zendri, Emilio
Title Risk analysis via heterogeneous models of SCADA interconnecting Power Grids and Telco networks Type Conference Article
Year 2009 Publication Proceedings of Fourth International Conference on Risks and Security of Internet and Systems (CRiSIS) Abbreviated Journal
Volume Issue Pages 90-97
Keywords
Abstract (up) The automation of power grids by means of supervisory control and data acquisition (SCADA) systems has led to an improvement of power grid operations and functionalities but also to pervasive cyber interdependencies between power grids and telecommunication networks. Many power grid services are increasingly depending upon the adequate functionality of SCADA system which in turn strictly depends on the adequate functionality of its communication infrastructure. We propose to tackle the SCADA risk analysis by means of different and heterogeneous modeling techniques and software tools. We demonstrate the applicability of our approach through a case study on an actual SCADA system for an electrical power distribution grid. The modeling techniques we discuss aim at providing a probabilistic dependability analysis, followed by a worst case analysis in presence of malicious attacks and a real-time performance evaluation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Fourth International Conference on Risks and Security of Internet and Systems (CRiSIS)
Notes Approved yes
Call Number Sapienza @ mari @ crisis09 Serial 17
Permanent link to this record
 

 
Author Tronci, Enrico; Della Penna, Giuseppe; Intrigila, Benedetto; Venturini Zilli, Marisa
Title A Probabilistic Approach to Automatic Verification of Concurrent Systems Type Conference Article
Year 2001 Publication 8th Asia-Pacific Software Engineering Conference (APSEC) Abbreviated Journal
Volume Issue Pages 317-324
Keywords
Abstract (up) The main barrier to automatic verification of concurrent systems is the huge amount of memory required to complete the verification task (state explosion). In this paper we present a probabilistic algorithm for automatic verification via model checking. Our algorithm trades space with time. In particular, when memory is full because of state explosion our algorithm does not give up verification. Instead it just proceeds at a lower speed and its results will only hold with some arbitrarily small error probability. Our preliminary experimental results show that by using our probabilistic algorithm we can typically save more than 30% of RAM with an average time penalty of about 100% w.r.t. a deterministic state space exploration with enough memory to complete the verification task. This is better than giving up the verification task because of lack of memory.
Address
Corporate Author Thesis
Publisher IEEE Computer Society Place of Publication Macau, China Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-7695-1408-1 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ apsec01 Serial 43
Permanent link to this record
 

 
Author Della Penna, Giuseppe; Intrigila, Benedetto; Tronci, Enrico; Venturini Zilli, Marisa
Title Exploiting Transition Locality in the Disk Based Mur$\varphi$ Verifier Type Conference Article
Year 2002 Publication 4th International Conference on Formal Methods in Computer-Aided Design (FMCAD) Abbreviated Journal
Volume Issue Pages 202-219
Keywords
Abstract (up) The main obstruction to automatic verification of Finite State Systems is the huge amount of memory required to complete the verification task (state explosion). This motivates research on distributed as well as disk based verification algorithms. In this paper we present a disk based Breadth First Explicit State Space Exploration algorithm as well as an implementation of it within the Mur$\varphi$ verifier. Our algorithm exploits transition locality (i.e. the statistical fact that most transitions lead to unvisited states or to recently visited states) to decrease disk read accesses thus reducing the time overhead due to disk usage. A disk based verification algorithm for Mur$\varphi$ has been already proposed in the literature. To measure the time speed up due to locality exploitation we compared our algorithm with such previously proposed algorithm. Our experimental results show that our disk based verification algorithm is typically more than 10 times faster than such previously proposed disk based verification algorithm. To measure the time overhead due to disk usage we compared our algorithm with RAM based verification using the (standard) Mur$\varphi$ verifier with enough memory to complete the verification task. Our experimental results show that even when using 1/10 of the RAM needed to complete verification, our disk based algorithm is only between 1.4 and 5.3 times (3 times on average) slower than (RAM) Mur$\varphi$ with enough RAM memory to complete the verification task at hand. Using our disk based Mur$\varphi$ we were able to complete verification of a protocol with about $10^9$ reachable states. This would require more than 5 gigabytes of RAM using RAM based Mur$\varphi$.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Portland, OR, USA Editor Aagaard, M.; O'Leary, J.W.
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 2517 Series Issue Edition
ISSN 3-540-00116-6 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ fmcad02 Serial 41
Permanent link to this record
 

 
Author Mancini, T.; Mari, F.; Massini, A.; Melatti, I.; Tronci, E.
Title On Checking Equivalence of Simulation Scripts Type Journal Article
Year 2021 Publication Journal of Logical and Algebraic Methods in Programming Abbreviated Journal
Volume Issue Pages 100640
Keywords Formal verification, Simulation based formal verification, Formal Verification of cyber-physical systems, System-level formal verification
Abstract (up) To support Model Based Design of Cyber-Physical Systems (CPSs) many simulation based approaches to System Level Formal Verification (SLFV) have been devised. Basically, these are Bounded Model Checking approaches (since simulation horizon is of course bounded) relying on simulators to compute the system dynamics and thereby verify the given system properties. The main obstacle to simulation based SLFV is the large number of simulation scenarios to be considered and thus the huge amount of simulation time needed to complete the verification task. To save on computation time, simulation based SLFV approaches exploit the capability of simulators to save and restore simulation states. Essentially, such a time saving is obtained by optimising the simulation script defining the simulation activity needed to carry out the verification task. Although such approaches aim to (bounded) formal verification, as a matter of fact, the proof of correctness of the methods to optimise simulation scripts basically relies on an intuitive semantics for simulation scripting languages. This hampers the possibility of formally showing that the optimisations introduced to speed up the simulation activity do not actually omit checking of relevant behaviours for the system under verification. The aim of this paper is to fill the above gap by presenting an operational semantics for simulation scripting languages and by proving soundness and completeness properties for it. This, in turn, enables formal proofs of equivalence between unoptimised and optimised simulation scripts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-2208 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MCLab @ davi @ Mancini2021100640 Serial 183
Permanent link to this record
 

 
Author Barbanera, Franco; Dezani-Ciancaglini, Mariangiola; Salvo, Ivano; Sassone, Vladimiro
Title A Type Inference Algorithm for Secure Ambients Type Journal Article
Year 2002 Publication Electronic Notes in Theoretical Computer Science Abbreviated Journal
Volume 62 Issue Pages 83-101
Keywords
Abstract (up) We consider a type discipline for the Ambient Calculus that associates ambients with security levels and constrains them to be traversed by or opened in ambients of higher security clearance only. We present a bottom-up algorithm that, given an untyped process P, computes a minimal set of constraints on security levels such that all actions during runs of P are performed without violating the security level priorities. Such an algorithm appears to be a prerequisite to use type systems to ensure security properties in the web scenario.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes TOSCA 2001, Theory of Concurrency, Higher Order Languages and Types Approved yes
Call Number Sapienza @ mari @ Barbanera-Dezani-Salvo-Sassone:01 Serial 73
Permanent link to this record
 

 
Author Cavaliere, Federico; Mari, Federico; Melatti, Igor; Minei, Giovanni; Salvo, Ivano; Tronci, Enrico; Verzino, Giovanni; Yushtein, Yuri
Title Model Checking Satellite Operational Procedures Type Conference Article
Year 2011 Publication DAta Systems In Aerospace (DASIA), Org. EuroSpace, Canadian Space Agency, CNES, ESA, EUMETSAT. San Anton, Malta, EuroSpace. Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) We present a model checking approach for the automatic verification of satellite operational procedures (OPs). Building a model for a complex system as a satellite is a hard task. We overcome this obstruction by using a suitable simulator (SIMSAT) for the satellite. Our approach aims at improving OP quality assurance by automatic exhaustive exploration of all possible simulation scenarios. Moreover, our solution decreases OP verification costs by using a model checker (CMurphi) to automatically drive the simulator. We model OPs as user-executed programs observing the simulator telemetries and sending telecommands to the simulator. In order to assess feasibility of our approach we present experimental results on a simple meaningful scenario. Our results show that we can save up to 90% of verification time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Dasia11 Serial 13
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico; Alvisi, Lorenzo; Clement, Allen; Li, Harry
Title Model Checking Nash Equilibria in MAD Distributed Systems Type Conference Article
Year 2008 Publication FMCAD '08: Proceedings of the 2008 International Conference on Formal Methods in Computer-Aided Design Abbreviated Journal
Volume Issue Pages 1-8
Keywords Model Checking, MAD Distributed System, Nash Equilibrium
Abstract (up) We present a symbolic model checking algorithm for verification of Nash equilibria in finite state mechanisms modeling Multiple Administrative Domains (MAD) distributed systems. Given a finite state mechanism, a proposed protocol for each agent and an indifference threshold for rewards, our model checker returns PASS if the proposed protocol is a Nash equilibrium (up to the given indifference threshold) for the given mechanism, FAIL otherwise. We implemented our model checking algorithm inside the NuSMV model checker and present experimental results showing its effectiveness for moderate size mechanisms. For example, we can handle mechanisms which corresponding normal form games would have more than $10^20$ entries. To the best of our knowledge, no model checking algorithm for verification of mechanism Nash equilibria has been previously published.
Address
Corporate Author Thesis
Publisher IEEE Press Place of Publication Piscataway, NJ, USA Editor Cimatti, A.; Jones, R.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-4244-2735-2 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ MarMelSalTroAlvCle08 Serial 93
Permanent link to this record
 

 
Author Della Penna, Giuseppe; Intrigila, Benedetto; Melatti, Igor; Tronci, Enrico; Venturini Zilli, Marisa
Title Integrating RAM and Disk Based Verification within the Mur$\varphi$ Verifier Type Conference Article
Year 2003 Publication Correct Hardware Design and Verification Methods, 12th IFIP WG 10.5 Advanced Research Working Conference, CHARME 2003, L'Aquila, Italy, October 21-24, 2003, Proceedings Abbreviated Journal
Volume Issue Pages 277-282
Keywords
Abstract (up) We present a verification algorithm that can automatically switch from RAM based verification to disk based verification without discarding the work done during the RAM based verification phase. This avoids having to choose beforehand the proper verification algorithm. Our experimental results show that typically our integrated algorithm is as fast as (sometime faster than) the fastest of the two base (i.e. RAM based and disk based) verification algorithms.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor Geist, D.; Tronci, E.
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 2860 Series Issue Edition
ISSN 3-540-20363-X ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ DIMTZ03a Serial 85
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title Synthesis of Quantized Feedback Control Software for Discrete Time Linear Hybrid Systems Type Conference Article
Year 2010 Publication Computer Aided Verification Abbreviated Journal
Volume Issue Pages 180-195
Keywords
Abstract (up) We present an algorithm that given a Discrete Time Linear Hybrid System returns a correct-by-construction software implementation K for a (near time optimal) robust quantized feedback controller for along with the set of states on which K is guaranteed to work correctly (controllable region). Furthermore, K has a Worst Case Execution Time linear in the number of bits of the quantization schema.
Address
Corporate Author Thesis
Publisher Springer Berlin / Heidelberg Place of Publication Editor Touili, T.; Cook, B.; Jackson, P.
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 6174 Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ cav2010 Serial 16
Permanent link to this record
 

 
Author Coppo, Mario; Dezani-Ciancaglini, Mariangiola; Giovannetti, Elio; Salvo, Ivano
Title Mobility Types for Mobile Processes in Mobile Ambients Type Journal Article
Year 2003 Publication Electr. Notes Theor. Comput. Sci. Abbreviated Journal
Volume 78 Issue Pages
Keywords
Abstract (up) We present an ambient-like calculus in which the open capability is dropped, and a new form of “lightweight  process mobility is introduced. The calculus comes equipped with a type system that allows the kind of values exchanged in communications and the access and mobility properties of processes to be controlled. A type inference procedure determines the “minimal  requirements to accept a system or a component as well typed. This gives a kind of principal typing. As an expressiveness test, we show that some well known calculi of concurrency and mobility can be encoded in our calculus in a natural way.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Coppo-Dezani-Giovannetti-Salvo:03 Serial 74
Permanent link to this record