|   | 
Details
   web
Records
Author Mancini, T.; Mari, F.; Massini, A.; Melatti, I.; Tronci, E.
Title On Checking Equivalence of Simulation Scripts Type Journal Article
Year 2021 Publication Journal of Logical and Algebraic Methods in Programming Abbreviated Journal
Volume Issue Pages (down) 100640
Keywords Formal verification, Simulation based formal verification, Formal Verification of cyber-physical systems, System-level formal verification
Abstract To support Model Based Design of Cyber-Physical Systems (CPSs) many simulation based approaches to System Level Formal Verification (SLFV) have been devised. Basically, these are Bounded Model Checking approaches (since simulation horizon is of course bounded) relying on simulators to compute the system dynamics and thereby verify the given system properties. The main obstacle to simulation based SLFV is the large number of simulation scenarios to be considered and thus the huge amount of simulation time needed to complete the verification task. To save on computation time, simulation based SLFV approaches exploit the capability of simulators to save and restore simulation states. Essentially, such a time saving is obtained by optimising the simulation script defining the simulation activity needed to carry out the verification task. Although such approaches aim to (bounded) formal verification, as a matter of fact, the proof of correctness of the methods to optimise simulation scripts basically relies on an intuitive semantics for simulation scripting languages. This hampers the possibility of formally showing that the optimisations introduced to speed up the simulation activity do not actually omit checking of relevant behaviours for the system under verification. The aim of this paper is to fill the above gap by presenting an operational semantics for simulation scripting languages and by proving soundness and completeness properties for it. This, in turn, enables formal proofs of equivalence between unoptimised and optimised simulation scripts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-2208 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MCLab @ davi @ Mancini2021100640 Serial 183
Permanent link to this record
 

 
Author Alimguzhin, Vadim; Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title Automatic Control Software Synthesis for Quantized Discrete Time Hybrid Systems Type Conference Article
Year 2012 Publication Proceedings of the 51th IEEE Conference on Decision and Control, CDC 2012, December 10-13, 2012, Maui, HI, USA Abbreviated Journal
Volume Issue Pages (down) 6120-6125
Keywords
Abstract
Address
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-4673-2065-8 Medium
Area Expedition Conference
Notes Techreport version can be found at http://arxiv.org/abs/1207.4098 Approved yes
Call Number Sapienza @ mari @ cdc12 Serial 96
Permanent link to this record
 

 
Author Alimguzhin, V.; Mari, F.; Melatti, I.; Salvo, I.; Tronci, E.
Title Linearising Discrete Time Hybrid Systems Type Journal Article
Year 2017 Publication IEEE Transactions on Automatic Control Abbreviated Journal
Volume 62 Issue 10 Pages (down) 5357-5364
Keywords
Abstract Model Based Design approaches for embedded systems aim at generating correct-by-construction control software, guaranteeing that the closed loop system (controller and plant) meets given system level formal specifications. This technical note addresses control synthesis for safety and reachability properties of possibly non-linear discrete time hybrid systems. By means of syntactical transformations that require non-linear terms to be Lipschitz continuous functions, we over-approximate non-linear dynamics with a linear system whose controllers are guaranteed to be controllers of the original system. We evaluate performance of our approach on meaningful control synthesis benchmarks, also comparing it to a state-of-the-art tool.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9286 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Sapienza @ mari @ ref7902199 Serial 164
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title Linear Constraints as a Modeling Language for Discrete Time Hybrid Systems Type Conference Article
Year 2012 Publication Proceedings of ICSEA 2012, The Seventh International Conference on Software Engineering Advances Abbreviated Journal
Volume Issue Pages (down) 664-671
Keywords
Abstract
Address
Corporate Author Thesis
Publisher ThinkMind Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ icsea12 Serial 98
Permanent link to this record
 

 
Author Toni Mancini; Enrico Tronci; Ivano Salvo; Federico Mari; Annalisa Massini; Igor Melatti
Title Computing Biological Model Parameters by Parallel Statistical Model Checking Type Journal Article
Year 2015 Publication International Work Conference on Bioinformatics and Biomedical Engineering (IWBBIO 2015) Abbreviated Journal
Volume 9044 Issue Pages (down) 542-554
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MCLab @ davi @ Serial 124
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico; Alvisi, Lorenzo; Clement, Allen; Li, Harry
Title Model Checking Coalition Nash Equilibria in MAD Distributed Systems Type Conference Article
Year 2009 Publication Stabilization, Safety, and Security of Distributed Systems, 11th International Symposium, SSS 2009, Lyon, France, November 3-6, 2009. Proceedings Abbreviated Journal
Volume Issue Pages (down) 531-546
Keywords
Abstract We present two OBDD based model checking algorithms for the verification of Nash equilibria in finite state mechanisms modeling Multiple Administrative Domains (MAD) distributed systems with possibly colluding agents (coalitions) and with possibly faulty or malicious nodes (Byzantine agents). Given a finite state mechanism, a proposed protocol for each agent and the maximum sizes f for Byzantine agents and q for agents collusions, our model checkers return Pass if the proposed protocol is an ε-f-q-Nash equilibrium, i.e. no coalition of size up to q may have an interest greater than ε in deviating from the proposed protocol when up to f Byzantine agents are present, Fail otherwise. We implemented our model checking algorithms within the NuSMV model checker: the first one explicitly checks equilibria for each coalition, while the second represents symbolically all coalitions. We present experimental results showing their effectiveness for moderate size mechanisms. For example, we can verify coalition Nash equilibria for mechanisms which corresponding normal form games would have more than $5 \times 10^21$ entries. Moreover, we compare the two approaches, and the explicit algorithm turns out to outperform the symbolic one. To the best of our knowledge, no model checking algorithm for verification of Nash equilibria of mechanisms with coalitions has been previously published.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor Guerraoui, R.; Petit, F.
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 5873 Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ sss09 Serial 19
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title From Boolean Relations to Control Software Type Conference Article
Year 2011 Publication Proceedings of ICSEA 2011, The Sixth International Conference on Software Engineering Advances Abbreviated Journal
Volume Issue Pages (down) 528-533
Keywords
Abstract Many software as well digital hardware automatic synthesis methods define the set of implementations meeting the given system specifications with a boolean relation K. In such a context a fundamental step in the software (hardware) synthesis process is finding effective solutions to the functional equation defined by K. This entails finding a (set of) boolean function(s) F (typically represented using OBDDs, Ordered Binary Decision Diagrams) such that: 1) for all x for which K is satisfiable, K(x, F(x)) = 1 holds; 2) the implementation of F is efficient with respect to given implementation parameters such as code size or execution time. While this problem has been widely studied in digital hardware synthesis, little has been done in a software synthesis context. Unfortunately the approaches developed for hardware synthesis cannot be directly used in a software context. This motivates investigation of effective methods to solve the above problem when F has to be implemented with software. In this paper we present an algorithm that, from an OBDD representation for K, generates a C code implementation for F that has the same size as the OBDD for F and a WCET (Worst Case Execution Time) linear in nr, being n = |x| the number of input arguments for functions in F and r the number of functions in F.
Address
Corporate Author Thesis
Publisher ThinkMind Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-61208-165-6 ISBN Medium
Area Expedition Conference
Notes Best Paper Award Approved yes
Call Number Sapienza @ mari @ icsea11 Serial 14
Permanent link to this record
 

 
Author Mancini, T.; Mari, F.; Melatti, I.; Salvo, I.; Tronci, E.; Gruber, J.K.; Hayes, B.; Prodanovic, M.; Elmegaard, L.
Title User Flexibility Aware Price Policy Synthesis for Smart Grids Type Conference Article
Year 2015 Publication Digital System Design (DSD), 2015 Euromicro Conference on Abbreviated Journal
Volume Issue Pages (down) 478-485
Keywords Contracts; Current measurement; Load management; Power demand; Power measurement; State estimation; Substations; Grid State Estimation; Peak Shaving; Policy Robustness Verification; Price Policy Synthesis
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Sapienza @ preissler @ Mancini_etal2015_3 Serial 136
Permanent link to this record
 

 
Author Mari, Federico; Tronci, Enrico
Title CEGAR Based Bounded Model Checking of Discrete Time Hybrid Systems Type Conference Article
Year 2007 Publication Hybrid Systems: Computation and Control (HSCC 2007) Abbreviated Journal
Volume Issue Pages (down) 399-412
Keywords Model Checking, Abstraction, CEGAR, SAT, Hybrid Systems, DTHS
Abstract Many hybrid systems can be conveniently modeled as Piecewise Affine Discrete Time Hybrid Systems PA-DTHS. As well known Bounded Model Checking (BMC) for such systems comes down to solve a Mixed Integer Linear Programming (MILP) feasibility problem. We present a SAT based BMC algorithm for automatic verification of PA-DTHSs. Using Counterexample Guided Abstraction Refinement (CEGAR) our algorithm gradually transforms a PA-DTHS verification problem into larger and larger SAT problems. Our experimental results show that our approach can handle PA-DTHSs that are more then 50 times larger than those that can be handled using a MILP solver.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor Bemporad, A.; Bicchi, A.; Buttazzo, G.C.
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 4416 Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ MarTro07 Serial 92
Permanent link to this record
 

 
Author Della Penna, Giuseppe; Intrigila, Benedetto; Melatti, Igor; Tronci, Enrico; Venturini Zilli, Marisa
Title Finite horizon analysis of Markov Chains with the Mur$\varphi$ verifier Type Journal Article
Year 2006 Publication Int. J. Softw. Tools Technol. Transf. Abbreviated Journal
Volume 8 Issue 4 Pages (down) 397-409
Keywords
Abstract In this paper we present an explicit disk-based verification algorithm for Probabilistic Systems defining discrete time/finite state Markov Chains. Given a Markov Chain and an integer k (horizon), our algorithm checks whether the probability of reaching an error state in at most k steps is below a given threshold. We present an implementation of our algorithm within a suitable extension of the Mur$\varphi$ verifier. We call the resulting probabilistic model checker FHP-Mur$\varphi$ (Finite Horizon Probabilistic Mur$\varphi$). We present experimental results comparing FHP-Mur$\varphi$ with (a finite horizon subset of) PRISM, a state-of-the-art symbolic model checker for Markov Chains. Our experimental results show that FHP-Mur$\varphi$ can handle systems that are out of reach for PRISM, namely those involving arithmetic operations on the state variables (e.g. hybrid systems).
Address
Corporate Author Thesis
Publisher Springer-Verlag Place of Publication Berlin, Heidelberg Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-2779 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Dimtz06 Serial 78
Permanent link to this record