toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Della Penna, Giuseppe; Intrigila, Benedetto; Melatti, Igor; Tronci, Enrico; Venturini Zilli, Marisa pdf  doi
openurl 
  Title Finite Horizon Analysis of Markov Chains with the Mur$\varphi$ Verifier Type Conference Article
  Year 2003 Publication Correct Hardware Design and Verification Methods, 12th IFIP WG 10.5 Advanced Research Working Conference, CHARME 2003, L'Aquila, Italy, October 21-24, 2003, Proceedings Abbreviated Journal  
  Volume Issue Pages (down) 394-409  
  Keywords  
  Abstract In this paper we present an explicit disk based verification algorithm for Probabilistic Systems defining discrete time/finite state Markov Chains. Given a Markov Chain and an integer k (horizon), our algorithm checks whether the probability of reaching an error state in at most k steps is below a given threshold. We present an implementation of our algorithm within a suitable extension of the Mur$\varphi$ verifier. We call the resulting probabilistic model checker FHP-Mur$\varphi$ (Finite Horizon Probabilistic Mur$\varphi$). We present experimental results comparing FHP-Mur$\varphi$ with (a finite horizon subset of) PRISM, a state-of-the-art symbolic model checker for Markov Chains. Our experimental results show that FHP-Mur$\varphi$ can handle systems that are out of reach for PRISM, namely those involving arithmetic operations on the state variables (e.g. hybrid systems).  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Geist, D.; Tronci, E.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 2860 Series Issue Edition  
  ISSN 3-540-20363-X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Dimtz03 Serial 84  
Permanent link to this record
 

 
Author Della Penna, Giuseppe; Intrigila, Benedetto; Melatti, Igor; Tronci, Enrico; Venturini Zilli, Marisa pdf  doi
openurl 
  Title Exploiting Transition Locality in Automatic Verification of Finite State Concurrent Systems Type Journal Article
  Year 2004 Publication Sttt Abbreviated Journal  
  Volume 6 Issue 4 Pages (down) 320-341  
  Keywords  
  Abstract In this paper we show that statistical properties of the transition graph of a system to be verified can be exploited to improve memory or time performances of verification algorithms. We show experimentally that protocols exhibit transition locality. That is, with respect to levels of a breadth-first state space exploration, state transitions tend to be between states belonging to close levels of the transition graph. We support our claim by measuring transition locality for the set of protocols included in the Mur$\varphi$ verifier distribution. We present a cache-based verification algorithm that exploits transition locality to decrease memory usage and a disk-based verification algorithm that exploits transition locality to decrease disk read accesses, thus reducing the time overhead due to disk usage. Both algorithms have been implemented within the Mur$\varphi$ verifier. Our experimental results show that our cache-based algorithm can typically save more than 40% of memory with an average time penalty of about 50% when using (Mur$\varphi$) bit compression and 100% when using bit compression and hash compaction, whereas our disk-based verification algorithm is typically more than ten times faster than a previously proposed disk-based verification algorithm and, even when using 10% of the memory needed to complete verification, it is only between 40 and 530% (300% on average) slower than (RAM) Mur$\varphi$ with enough memory to complete the verification task at hand. Using just 300 MB of memory our disk-based Mur$\varphi$ was able to complete verification of a protocol with about $10^9$ reachable states. This would require more than 5 GB of memory using standard Mur$\varphi$.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ DIMTZ04j Serial 91  
Permanent link to this record
 

 
Author Tronci, Enrico; Della Penna, Giuseppe; Intrigila, Benedetto; Venturini Zilli, Marisa pdf  doi
openurl 
  Title A Probabilistic Approach to Automatic Verification of Concurrent Systems Type Conference Article
  Year 2001 Publication 8th Asia-Pacific Software Engineering Conference (APSEC) Abbreviated Journal  
  Volume Issue Pages (down) 317-324  
  Keywords  
  Abstract The main barrier to automatic verification of concurrent systems is the huge amount of memory required to complete the verification task (state explosion). In this paper we present a probabilistic algorithm for automatic verification via model checking. Our algorithm trades space with time. In particular, when memory is full because of state explosion our algorithm does not give up verification. Instead it just proceeds at a lower speed and its results will only hold with some arbitrarily small error probability. Our preliminary experimental results show that by using our probabilistic algorithm we can typically save more than 30% of RAM with an average time penalty of about 100% w.r.t. a deterministic state space exploration with enough memory to complete the verification task. This is better than giving up the verification task because of lack of memory.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Computer Society Place of Publication Macau, China Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0-7695-1408-1 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ apsec01 Serial 43  
Permanent link to this record
 

 
Author Mancini, T.; Mari, F.; Melatti, I.; Salvo, I.; Tronci, E. pdf  url
doi  openurl
  Title An Efficient Algorithm for Network Vulnerability Analysis Under Malicious Attacks Type Conference Article
  Year 2018 Publication Foundations of Intelligent Systems – 24th International Symposium, ISMIS 2018, Limassol, Cyprus, October 29-31, 2018, Proceedings Abbreviated Journal  
  Volume Issue Pages (down) 302-312  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Best Paper Approved no  
  Call Number MCLab @ davi @ DBLP:conf/ismis/ManciniMMST18 Serial 176  
Permanent link to this record
 

 
Author Mancini, Toni; Mari, Federico; Massini, Annalisa; Melatti, Igor; Merli, Fabio; Tronci, Enrico pdf  doi
isbn  openurl
  Title System Level Formal Verification via Model Checking Driven Simulation Type Conference Article
  Year 2013 Publication Proceedings of the 25th International Conference on Computer Aided Verification. July 13-19, 2013, Saint Petersburg, Russia Abbreviated Journal CAV 2013  
  Volume Issue Pages (down) 296-312  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer - Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 8044 Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-39798-1 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Serial 113  
Permanent link to this record
 

 
Author Sinisi, S.; Alimguzhin, V.; Mancini, T.; Tronci, E.; Mari, F.; Leeners, B. pdf  doi
openurl 
  Title Optimal Personalised Treatment Computation through In Silico Clinical Trials on Patient Digital Twins Type Journal Article
  Year 2020 Publication Abbreviated Journal Fundamenta Informaticae  
  Volume 174 Issue Pages (down) 283-310  
  Keywords Artificial Intelligence; Virtual Physiological Human; In Silico Clinical Trials; Simulation; Personalised Medicine; In Silico Treatment Optimisation  
  Abstract In Silico Clinical Trials (ISCT), i.e. clinical experimental campaigns carried out by means of computer simulations, hold the promise to decrease time and cost for the safety and efficacy assessment of pharmacological treatments, reduce the need for animal and human testing, and enable precision medicine. In this paper we present methods and an algorithm that, by means of extensive computer simulation-based experimental campaigns (ISCT) guided by intelligent search, optimise a pharmacological treatment for an individual patient (precision medicine ). We show the effectiveness of our approach on a case study involving a real pharmacological treatment, namely the downregulation phase of a complex clinical protocol for assisted reproduction in humans.  
  Address  
  Corporate Author Thesis  
  Publisher IOS Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1875-8681 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MCLab @ davi @ Serial 187  
Permanent link to this record
 

 
Author Della Penna, Giuseppe; Intrigila, Benedetto; Melatti, Igor; Tronci, Enrico; Venturini Zilli, Marisa pdf  doi
openurl 
  Title Integrating RAM and Disk Based Verification within the Mur$\varphi$ Verifier Type Conference Article
  Year 2003 Publication Correct Hardware Design and Verification Methods, 12th IFIP WG 10.5 Advanced Research Working Conference, CHARME 2003, L'Aquila, Italy, October 21-24, 2003, Proceedings Abbreviated Journal  
  Volume Issue Pages (down) 277-282  
  Keywords  
  Abstract We present a verification algorithm that can automatically switch from RAM based verification to disk based verification without discarding the work done during the RAM based verification phase. This avoids having to choose beforehand the proper verification algorithm. Our experimental results show that typically our integrated algorithm is as fast as (sometime faster than) the fastest of the two base (i.e. RAM based and disk based) verification algorithms.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Geist, D.; Tronci, E.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 2860 Series Issue Edition  
  ISSN 3-540-20363-X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ DIMTZ03a Serial 85  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Tronci, Enrico; Finzi, Alberto pdf  url
doi  openurl
  Title A multi-hop advertising discovery and delivering protocol for multi administrative domain MANET Type Journal Article
  Year 2013 Publication Mobile Information Systems Abbreviated Journal Mobile Information Systems  
  Volume 3 Issue 9 Pages (down) 261-280  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher IOS Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1574-017x (Print) 1875-905X (Online) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Sapienza @ melatti @ Serial 109  
Permanent link to this record
 

 
Author Tronci, Enrico; Della Penna, Giuseppe; Intrigila, Benedetto; Venturini Zilli, Marisa pdf  doi
openurl 
  Title Exploiting Transition Locality in Automatic Verification Type Conference Article
  Year 2001 Publication 11th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware Design and Verification Methods (CHARME) Abbreviated Journal  
  Volume Issue Pages (down) 259-274  
  Keywords  
  Abstract In this paper we present an algorithm to contrast state explosion when using Explicit State Space Exploration to verify protocols. We show experimentally that protocols exhibit transition locality. We present a verification algorithm that exploits transition locality as well as an implementation of it within the Mur$\varphi$ verifier. Our algorithm is compatible with all Breadth First (BF) optimization techniques present in the Mur$\varphi$ verifier and it is by no means a substitute for any of them. In fact, since our algorithm trades space with time, it is typically most useful when one runs out of memory and has already used all other state reduction techniques present in the Mur$\varphi$ verifier. Our experimental results show that using our approach we can typically save more than 40% of RAM with an average time penalty of about 50% when using (Mur$\varphi$) bit compression and 100% when using bit compression and hash compaction.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Livingston, Scotland, UK Editor Margaria, T.; Melham, T.F.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 2144 Series Issue Edition  
  ISSN 3-540-42541-1 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ charme01 Serial 44  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico pdf  doi
isbn  openurl
  Title Undecidability of Quantized State Feedback Control for Discrete Time Linear Hybrid Systems Type Book Chapter
  Year 2012 Publication Theoretical Aspects of Computing – ICTAC 2012 Abbreviated Journal  
  Volume Issue Pages (down) 243-258  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Roychoudhury, A.; D'Souza, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 7521 Series Issue Edition  
  ISSN ISBN 978-3-642-32942-5 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Mari2012 Serial 99  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: