|   | 
Details
   web
Records
Author Mancini, Toni; Mari, Federico; Massini, Annalisa; Melatti, Igor; Tronci, Enrico
Title Anytime System Level Verification via Random Exhaustive Hardware In The Loop Simulation Type Conference Article
Year 2014 Publication (down) In Proceedings of 17th EuroMicro Conference on Digital System Design (DSD 2014) Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MCLab @ davi @ Serial 122
Permanent link to this record
 

 
Author Melatti, I.; Mari, F.; Mancini, T.; Prodanovic, M.; Tronci, E.
Title A Two-Layer Near-Optimal Strategy for Substation Constraint Management via Home Batteries Type Journal Article
Year 2021 Publication (down) IEEE Transactions on Industrial Electronics Abbreviated Journal
Volume Issue Pages 1-1
Keywords
Abstract Within electrical distribution networks, substation constraints management requires that aggregated power demand from residential users is kept within suitable bounds. Efficiency of substation constraints management can be measured as the reduction of constraints violations w.r.t. unmanaged demand. Home batteries hold the promise of enabling efficient and user-oblivious substation constraints management. Centralized control of home batteries would achieve optimal efficiency. However, it is hardly acceptable by users, since service providers (e.g., utilities or aggregators) would directly control batteries at user premises. Unfortunately, devising efficient hierarchical control strategies, thus overcoming the above problem, is far from easy. We present a novel two-layer control strategy for home batteries that avoids direct control of home devices by the service provider and at the same time yields near-optimal substation constraints management efficiency. Our simulation results on field data from 62 households in Denmark show that the substation constraints management efficiency achieved with our approach is at least 82% of the one obtained with a theoretical optimal centralized strategy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes To appear Approved no
Call Number MCLab @ davi @ ref9513535 Serial 190
Permanent link to this record
 

 
Author Alimguzhin, V.; Mari, F.; Melatti, I.; Salvo, I.; Tronci, E.
Title Linearising Discrete Time Hybrid Systems Type Journal Article
Year 2017 Publication (down) IEEE Transactions on Automatic Control Abbreviated Journal
Volume 62 Issue 10 Pages 5357-5364
Keywords
Abstract Model Based Design approaches for embedded systems aim at generating correct-by-construction control software, guaranteeing that the closed loop system (controller and plant) meets given system level formal specifications. This technical note addresses control synthesis for safety and reachability properties of possibly non-linear discrete time hybrid systems. By means of syntactical transformations that require non-linear terms to be Lipschitz continuous functions, we over-approximate non-linear dynamics with a linear system whose controllers are guaranteed to be controllers of the original system. We evaluate performance of our approach on meaningful control synthesis benchmarks, also comparing it to a state-of-the-art tool.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9286 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Sapienza @ mari @ ref7902199 Serial 164
Permanent link to this record
 

 
Author Della Penna, Giuseppe; Intrigila, Benedetto; Melatti, Igor; Minichino, Michele; Ciancamerla, Ester; Parisse, Andrea; Tronci, Enrico; Venturini Zilli, Marisa
Title Automatic Verification of a Turbogas Control System with the Mur$\varphi$ Verifier Type Conference Article
Year 2003 Publication (down) Hybrid Systems: Computation and Control, 6th International Workshop, HSCC 2003 Prague, Czech Republic, April 3-5, 2003, Proceedings Abbreviated Journal
Volume Issue Pages 141-155
Keywords
Abstract Automatic analysis of Hybrid Systems poses formidable challenges both from a modeling as well as from a verification point of view. We present a case study on automatic verification of a Turbogas Control System (TCS) using an extended version of the Mur$\varphi$ verifier. TCS is the heart of ICARO, a 2MW Co-generative Electric Power Plant. For large hybrid systems, as TCS is, the modeling effort accounts for a significant part of the whole verification activity. In order to ease our modeling effort we extended the Mur$\varphi$ verifier by importing the C language long double type (finite precision real numbers) into it. We give experimental results on running our extended Mur$\varphi$ on our TCS model. For example using Mur$\varphi$ we were able to compute an admissible range of values for the variation speed of the user demand of electric power to the turbogas.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor Maler, O.; Pnueli, A.
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 2623 Series Issue Edition
ISSN 3-540-00913-2 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Dimmcptz03 Serial 88
Permanent link to this record
 

 
Author Mari, Federico; Tronci, Enrico
Title CEGAR Based Bounded Model Checking of Discrete Time Hybrid Systems Type Conference Article
Year 2007 Publication (down) Hybrid Systems: Computation and Control (HSCC 2007) Abbreviated Journal
Volume Issue Pages 399-412
Keywords Model Checking, Abstraction, CEGAR, SAT, Hybrid Systems, DTHS
Abstract Many hybrid systems can be conveniently modeled as Piecewise Affine Discrete Time Hybrid Systems PA-DTHS. As well known Bounded Model Checking (BMC) for such systems comes down to solve a Mixed Integer Linear Programming (MILP) feasibility problem. We present a SAT based BMC algorithm for automatic verification of PA-DTHSs. Using Counterexample Guided Abstraction Refinement (CEGAR) our algorithm gradually transforms a PA-DTHS verification problem into larger and larger SAT problems. Our experimental results show that our approach can handle PA-DTHSs that are more then 50 times larger than those that can be handled using a MILP solver.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor Bemporad, A.; Bicchi, A.; Buttazzo, G.C.
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 4416 Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ MarTro07 Serial 92
Permanent link to this record
 

 
Author Mancini, T.; Mari, F.; Massini, A.; Melatti, I.; Tronci, E.
Title SyLVaaS: System Level Formal Verification as a Service Type Journal Article
Year 2016 Publication (down) Fundamenta Informaticae Abbreviated Journal
Volume 149 Issue 1-2 Pages 101-132
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MCLab @ davi @ DBLP:journals/fuin/ManciniMMMT16 Serial 160
Permanent link to this record
 

 
Author Mancini, T.; Mari, F.; Melatti, I.; Salvo, I.; Tronci, E.
Title An Efficient Algorithm for Network Vulnerability Analysis Under Malicious Attacks Type Conference Article
Year 2018 Publication (down) Foundations of Intelligent Systems – 24th International Symposium, ISMIS 2018, Limassol, Cyprus, October 29-31, 2018, Proceedings Abbreviated Journal
Volume Issue Pages 302-312
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Best Paper Approved no
Call Number MCLab @ davi @ DBLP:conf/ismis/ManciniMMST18 Serial 176
Permanent link to this record
 

 
Author Della Penna, Giuseppe; Intrigila, Benedetto; Melatti, Igor; Tronci, Enrico; Venturini Zilli, Marisa
Title Bounded Probabilistic Model Checking with the Mur$\varphi$ Verifier Type Conference Article
Year 2004 Publication (down) Formal Methods in Computer-Aided Design, 5th International Conference, FMCAD 2004, Austin, Texas, USA, November 15-17, 2004, Proceedings Abbreviated Journal
Volume Issue Pages 214-229
Keywords
Abstract In this paper we present an explicit verification algorithm for Probabilistic Systems defining discrete time/finite state Markov Chains. We restrict ourselves to verification of Bounded PCTL formulas (BPCTL), that is, PCTL formulas in which all Until operators are bounded, possibly with different bounds. This means that we consider only paths (system runs) of bounded length. Given a Markov Chain $\cal M$ and a BPCTL formula Φ, our algorithm checks if Φ is satisfied in $\cal M$. This allows to verify important properties, such as reliability in Discrete Time Hybrid Systems. We present an implementation of our algorithm within a suitable extension of the Mur$\varphi$ verifier. We call FHP-Mur$\varphi$ (Finite Horizon Probabilistic Mur$\varphi$) such extension of the Mur$\varphi$ verifier. We give experimental results comparing FHP-Mur$\varphi$ with (a finite horizon subset of) PRISM, a state-of-the-art symbolic model checker for Markov Chains. Our experimental results show that FHP-Mur$\varphi$ can effectively handle verification of BPCTL formulas for systems that are out of reach for PRISM, namely those involving arithmetic operations on the state variables (e.g. hybrid systems).
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor Hu, A.J.; Martin, A.K.
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 3312 Series Issue Edition
ISSN 3-540-23738-0 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Dimtz04 Serial 87
Permanent link to this record
 

 
Author Tronci, E.; Mancini, T.; Salvo, I.; Mari, F.; Melatti, I.; Massini, A.; Sinisi, S.; Davì, F.; Dierkes, T.; Ehrig, R.; Röblitz, S.; Leeners, B.; Krüger, T.; Egli, M.; Ille, F.
Title Patient-Specific Models from Inter-Patient Biological Models and Clinical Records Type Conference Article
Year 2014 Publication (down) Formal Methods in Computer-Aided Design (FMCAD) Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Sapienza @ mari @ Serial 120
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico; Alvisi, Lorenzo; Clement, Allen; Li, Harry
Title Model Checking Nash Equilibria in MAD Distributed Systems Type Conference Article
Year 2008 Publication (down) FMCAD '08: Proceedings of the 2008 International Conference on Formal Methods in Computer-Aided Design Abbreviated Journal
Volume Issue Pages 1-8
Keywords Model Checking, MAD Distributed System, Nash Equilibrium
Abstract We present a symbolic model checking algorithm for verification of Nash equilibria in finite state mechanisms modeling Multiple Administrative Domains (MAD) distributed systems. Given a finite state mechanism, a proposed protocol for each agent and an indifference threshold for rewards, our model checker returns PASS if the proposed protocol is a Nash equilibrium (up to the given indifference threshold) for the given mechanism, FAIL otherwise. We implemented our model checking algorithm inside the NuSMV model checker and present experimental results showing its effectiveness for moderate size mechanisms. For example, we can handle mechanisms which corresponding normal form games would have more than $10^20$ entries. To the best of our knowledge, no model checking algorithm for verification of mechanism Nash equilibria has been previously published.
Address
Corporate Author Thesis
Publisher IEEE Press Place of Publication Piscataway, NJ, USA Editor Cimatti, A.; Jones, R.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-4244-2735-2 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ MarMelSalTroAlvCle08 Serial 93
Permanent link to this record