toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Alimguzhin, Vadim; Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico url  openurl
  Title A Map-Reduce Parallel Approach to Automatic Synthesis of Control Software Type Report
  Year 2012 Publication (up) Abbreviated Journal  
  Volume abs/1210.2276 Issue Pages  
  Keywords  
  Abstract Many Control Systems are indeed Software Based Control Systems, i.e. control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of control software.
Available algorithms and tools (e.g., QKS) may require weeks or even months of computation to synthesize control software for large-size systems. This motivates search for parallel algorithms for control software synthesis.
In this paper, we present a map-reduce style parallel algorithm for control software synthesis when the controlled system (plant) is modeled as discrete time linear hybrid system. Furthermore we present an MPI-based implementation PQKS of our algorithm. To the best of our knowledge, this is the first parallel approach for control software synthesis.
We experimentally show effectiveness of PQKS on two classical control synthesis problems: the inverted pendulum and the multi-input buck DC/DC converter. Experiments show that PQKS efficiency is above 65%. As an example, PQKS requires about 16 hours to complete the synthesis of control software for the pendulum on a cluster with 60 processors, instead of the 25 days needed by the sequential algorithm in QKS.
 
  Address  
  Corporate Author Thesis  
  Publisher CoRR, Technical Report Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Serial 101  
Permanent link to this record
 

 
Author Alimguzhin, Vadim; Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico url  openurl
  Title On Model Based Synthesis of Embedded Control Software Type Report
  Year 2012 Publication (up) Abbreviated Journal  
  Volume abs/1207.4474 Issue Pages  
  Keywords  
  Abstract Many Embedded Systems are indeed Software Based Control Systems (SBCSs), that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for control software. Given the formal model of a plant as a Discrete Time Linear Hybrid System and the implementation specifications (that is, number of bits in the Analog-to-Digital (AD) conversion) correct-by-construction control software can be automatically generated from System Level Formal Specifications of the closed loop system (that is, safety and liveness requirements), by computing a suitable finite abstraction of the plant.
With respect to given implementation specifications, the automatically generated code implements a time optimal control strategy (in terms of set-up time), has a Worst Case Execution Time linear in the number of AD bits $b$, but unfortunately, its size grows exponentially with respect to $b$. In many embedded systems, there are severe restrictions on the computational resources (such as memory or computational power) available to microcontroller devices.
This paper addresses model based synthesis of control software by trading system level non-functional requirements (such us optimal set-up time, ripple) with software non-functional requirements (its footprint). Our experimental results show the effectiveness of our approach: for the inverted pendulum benchmark, by using a quantization schema with 12 bits, the size of the small controller is less than 6% of the size of the time optimal one.
 
  Address  
  Corporate Author Thesis  
  Publisher CoRR, Technical Report Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Serial 102  
Permanent link to this record
 

 
Author Alimguzhin, Vadim; Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico url  openurl
  Title Automatic Control Software Synthesis for Quantized Discrete Time Hybrid Systems Type Report
  Year 2012 Publication (up) Abbreviated Journal  
  Volume abs/1207.4098 Issue Pages  
  Keywords  
  Abstract Many Embedded Systems are indeed Software Based Control Systems, that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of embedded systems control software. This paper addresses control software synthesis for discrete time nonlinear systems. We present a methodology to overapproximate the dynamics of a discrete time nonlinear hybrid system H by means of a discrete time linear hybrid system L(H), in such a way that controllers for L(H) are guaranteed to be controllers for H. We present experimental results on the inverted pendulum, a challenging and meaningful benchmark in nonlinear Hybrid Systems control.  
  Address  
  Corporate Author Thesis  
  Publisher CoRR, Technical Report Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Serial 103  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico url  openurl
  Title Model Based Synthesis of Control Software from System Level Formal Specifications Type Report
  Year 2013 Publication (up) Abbreviated Journal  
  Volume abs/1107.5638 Issue Pages  
  Keywords  
  Abstract Many Embedded Systems are indeed Software Based Control Systems, that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of embedded systems control software.
We present an algorithm, along with a tool QKS implementing it, that from a formal model (as a Discrete Time Linear Hybrid System) of the controlled system (plant), implementation specifications (that is, number of bits in the Analog-to-Digital, AD, conversion) and System Level Formal Specifications (that is, safety and liveness requirements for the closed loop system) returns correct-by-construction control software that has a Worst Case Execution Time (WCET) linear in the number of AD bits and meets the given specifications.
We show feasibility of our approach by presenting experimental results on using it to synthesize control software for a buck DC-DC converter, a widely used mixed-mode analog circuit, and for the inverted pendulum.
 
  Address  
  Corporate Author Thesis  
  Publisher CoRR, Technical Report Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Serial 104  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico url  openurl
  Title From Boolean Functional Equations to Control Software Type Report
  Year 2011 Publication (up) Abbreviated Journal  
  Volume abs/1106.0468 Issue Pages  
  Keywords  
  Abstract Many software as well digital hardware automatic synthesis methods define the set of implementations meeting the given system specifications with a boolean relation K. In such a context a fundamental step in the software (hardware) synthesis process is finding effective solutions to the functional equation defined by K. This entails finding a (set of) boolean function(s) F (typically represented using OBDDs, Ordered Binary Decision Diagrams) such that: 1) for all x for which K is satisfiable, K(x, F(x)) = 1 holds; 2) the implementation of F is efficient with respect to given implementation parameters such as code size or execution time. While this problem has been widely studied in digital hardware synthesis, little has been done in a software synthesis context. Unfortunately the approaches developed for hardware synthesis cannot be directly used in a software context. This motivates investigation of effective methods to solve the above problem when F has to be implemented with software. In this paper we present an algorithm that, from an OBDD representation for K, generates a C code implementation for F that has the same size as the OBDD for F and a WCET (Worst Case Execution Time) at most O(nr), being n = |x| the number of arguments of functions in F and r the number of functions in F.  
  Address  
  Corporate Author Thesis  
  Publisher CoRR, Technical Report Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Serial 105  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico url  openurl
  Title Quantized Feedback Control Software Synthesis from System Level Formal Specifications for Buck DC/DC Converters Type Report
  Year 2011 Publication (up) Abbreviated Journal  
  Volume abs/1105.5640 Issue Pages  
  Keywords  
  Abstract Many Embedded Systems are indeed Software Based Control Systems (SBCSs), that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of SBCS control software. In previous works we presented an algorithm, along with a tool QKS implementing it, that from a formal model (as a Discrete Time Linear Hybrid System, DTLHS) of the controlled system (plant), implementation specifications (that is, number of bits in the Analog-to-Digital, AD, conversion) and System Level Formal Specifications (that is, safety and liveness requirements for the closed loop system) returns correct-by-construction control software that has a Worst Case Execution Time (WCET) linear in the number of AD bits and meets the given specifications. In this technical report we present full experimental results on using it to synthesize control software for two versions of buck DC-DC converters (single-input and multi-input), a widely used mixed-mode analog circuit.  
  Address  
  Corporate Author Thesis  
  Publisher CoRR, Technical Report Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Serial 106  
Permanent link to this record
 

 
Author Tronci, Enrico; Della Penna, Giuseppe; Intrigila, Benedetto; Venturini Zilli, Marisa pdf  doi
openurl 
  Title Exploiting Transition Locality in Automatic Verification Type Conference Article
  Year 2001 Publication (up) 11th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware Design and Verification Methods (CHARME) Abbreviated Journal  
  Volume Issue Pages 259-274  
  Keywords  
  Abstract In this paper we present an algorithm to contrast state explosion when using Explicit State Space Exploration to verify protocols. We show experimentally that protocols exhibit transition locality. We present a verification algorithm that exploits transition locality as well as an implementation of it within the Mur$\varphi$ verifier. Our algorithm is compatible with all Breadth First (BF) optimization techniques present in the Mur$\varphi$ verifier and it is by no means a substitute for any of them. In fact, since our algorithm trades space with time, it is typically most useful when one runs out of memory and has already used all other state reduction techniques present in the Mur$\varphi$ verifier. Our experimental results show that using our approach we can typically save more than 40% of RAM with an average time penalty of about 50% when using (Mur$\varphi$) bit compression and 100% when using bit compression and hash compaction.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Livingston, Scotland, UK Editor Margaria, T.; Melham, T.F.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 2144 Series Issue Edition  
  ISSN 3-540-42541-1 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ charme01 Serial 44  
Permanent link to this record
 

 
Author Della Penna, Giuseppe; Intrigila, Benedetto; Tronci, Enrico; Venturini Zilli, Marisa pdf  doi
openurl 
  Title Exploiting Transition Locality in the Disk Based Mur$\varphi$ Verifier Type Conference Article
  Year 2002 Publication (up) 4th International Conference on Formal Methods in Computer-Aided Design (FMCAD) Abbreviated Journal  
  Volume Issue Pages 202-219  
  Keywords  
  Abstract The main obstruction to automatic verification of Finite State Systems is the huge amount of memory required to complete the verification task (state explosion). This motivates research on distributed as well as disk based verification algorithms. In this paper we present a disk based Breadth First Explicit State Space Exploration algorithm as well as an implementation of it within the Mur$\varphi$ verifier. Our algorithm exploits transition locality (i.e. the statistical fact that most transitions lead to unvisited states or to recently visited states) to decrease disk read accesses thus reducing the time overhead due to disk usage. A disk based verification algorithm for Mur$\varphi$ has been already proposed in the literature. To measure the time speed up due to locality exploitation we compared our algorithm with such previously proposed algorithm. Our experimental results show that our disk based verification algorithm is typically more than 10 times faster than such previously proposed disk based verification algorithm. To measure the time overhead due to disk usage we compared our algorithm with RAM based verification using the (standard) Mur$\varphi$ verifier with enough memory to complete the verification task. Our experimental results show that even when using 1/10 of the RAM needed to complete verification, our disk based algorithm is only between 1.4 and 5.3 times (3 times on average) slower than (RAM) Mur$\varphi$ with enough RAM memory to complete the verification task at hand. Using our disk based Mur$\varphi$ we were able to complete verification of a protocol with about $10^9$ reachable states. This would require more than 5 gigabytes of RAM using RAM based Mur$\varphi$.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Portland, OR, USA Editor Aagaard, M.; O'Leary, J.W.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 2517 Series Issue Edition  
  ISSN 3-540-00116-6 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ fmcad02 Serial 41  
Permanent link to this record
 

 
Author Tronci, Enrico; Della Penna, Giuseppe; Intrigila, Benedetto; Venturini Zilli, Marisa pdf  doi
openurl 
  Title A Probabilistic Approach to Automatic Verification of Concurrent Systems Type Conference Article
  Year 2001 Publication (up) 8th Asia-Pacific Software Engineering Conference (APSEC) Abbreviated Journal  
  Volume Issue Pages 317-324  
  Keywords  
  Abstract The main barrier to automatic verification of concurrent systems is the huge amount of memory required to complete the verification task (state explosion). In this paper we present a probabilistic algorithm for automatic verification via model checking. Our algorithm trades space with time. In particular, when memory is full because of state explosion our algorithm does not give up verification. Instead it just proceeds at a lower speed and its results will only hold with some arbitrarily small error probability. Our preliminary experimental results show that by using our probabilistic algorithm we can typically save more than 30% of RAM with an average time penalty of about 100% w.r.t. a deterministic state space exploration with enough memory to complete the verification task. This is better than giving up the verification task because of lack of memory.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Computer Society Place of Publication Macau, China Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0-7695-1408-1 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ apsec01 Serial 43  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico pdf  url
doi  openurl
  Title Model Based Synthesis of Control Software from System Level Formal Specifications Type Journal Article
  Year 2014 Publication (up) ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY Abbreviated Journal ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY  
  Volume 23 Issue 1 Pages Article 6  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher ACM Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1049-331X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Sapienza @ melatti @ Serial 110  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: