toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tronci, Enrico; Della Penna, Giuseppe; Intrigila, Benedetto; Venturini Zilli, Marisa pdf  doi
openurl 
  Title A Probabilistic Approach to Automatic Verification of Concurrent Systems Type Conference Article
  Year 2001 Publication 8th Asia-Pacific Software Engineering Conference (APSEC) Abbreviated Journal  
  Volume Issue Pages 317-324  
  Keywords  
  Abstract The main barrier to automatic verification of concurrent systems is the huge amount of memory required to complete the verification task (state explosion). In this paper we present a probabilistic algorithm for automatic verification via model checking. Our algorithm trades space with time. In particular, when memory is full because of state explosion our algorithm does not give up verification. Instead it just proceeds at a lower speed and its results will only hold with some arbitrarily small error probability. Our preliminary experimental results show that by using our probabilistic algorithm we can typically save more than 30% of RAM with an average time penalty of about 100% w.r.t. a deterministic state space exploration with enough memory to complete the verification task. This is better than giving up the verification task because of lack of memory.  
  Address  
  Corporate Author Thesis  
  Publisher (up) IEEE Computer Society Place of Publication Macau, China Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0-7695-1408-1 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ apsec01 Serial 43  
Permanent link to this record
 

 
Author Mancini, Toni ; Mari, Federico ; Massini, Annalisa; Melatti, Igor; Tronci, Enrico pdf  doi
openurl 
  Title System Level Formal Verification via Distributed Multi-Core Hardware in the Loop Simulation Type Conference Article
  Year 2014 Publication Proc. of the 22nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing Abbreviated Journal Euromicro International Conference on Parallel, Distributed and Network-Based Processing  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) IEEE Computer Society Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Sapienza @ melatti @ Serial 118  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico; Alvisi, Lorenzo; Clement, Allen; Li, Harry pdf  doi
openurl 
  Title Model Checking Nash Equilibria in MAD Distributed Systems Type Conference Article
  Year 2008 Publication FMCAD '08: Proceedings of the 2008 International Conference on Formal Methods in Computer-Aided Design Abbreviated Journal  
  Volume Issue Pages 1-8  
  Keywords Model Checking, MAD Distributed System, Nash Equilibrium  
  Abstract We present a symbolic model checking algorithm for verification of Nash equilibria in finite state mechanisms modeling Multiple Administrative Domains (MAD) distributed systems. Given a finite state mechanism, a proposed protocol for each agent and an indifference threshold for rewards, our model checker returns PASS if the proposed protocol is a Nash equilibrium (up to the given indifference threshold) for the given mechanism, FAIL otherwise. We implemented our model checking algorithm inside the NuSMV model checker and present experimental results showing its effectiveness for moderate size mechanisms. For example, we can handle mechanisms which corresponding normal form games would have more than $10^20$ entries. To the best of our knowledge, no model checking algorithm for verification of mechanism Nash equilibria has been previously published.  
  Address  
  Corporate Author Thesis  
  Publisher (up) IEEE Press Place of Publication Piscataway, NJ, USA Editor Cimatti, A.; Jones, R.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-4244-2735-2 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ MarMelSalTroAlvCle08 Serial 93  
Permanent link to this record
 

 
Author Sinisi, S.; Alimguzhin, V.; Mancini, T.; Tronci, E.; Mari, F.; Leeners, B. pdf  doi
openurl 
  Title Optimal Personalised Treatment Computation through In Silico Clinical Trials on Patient Digital Twins Type Journal Article
  Year 2020 Publication Abbreviated Journal Fundamenta Informaticae  
  Volume 174 Issue Pages 283-310  
  Keywords Artificial Intelligence; Virtual Physiological Human; In Silico Clinical Trials; Simulation; Personalised Medicine; In Silico Treatment Optimisation  
  Abstract In Silico Clinical Trials (ISCT), i.e. clinical experimental campaigns carried out by means of computer simulations, hold the promise to decrease time and cost for the safety and efficacy assessment of pharmacological treatments, reduce the need for animal and human testing, and enable precision medicine. In this paper we present methods and an algorithm that, by means of extensive computer simulation-based experimental campaigns (ISCT) guided by intelligent search, optimise a pharmacological treatment for an individual patient (precision medicine ). We show the effectiveness of our approach on a case study involving a real pharmacological treatment, namely the downregulation phase of a complex clinical protocol for assisted reproduction in humans.  
  Address  
  Corporate Author Thesis  
  Publisher (up) IOS Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1875-8681 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MCLab @ davi @ Serial 187  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Tronci, Enrico; Finzi, Alberto pdf  url
doi  openurl
  Title A multi-hop advertising discovery and delivering protocol for multi administrative domain MANET Type Journal Article
  Year 2013 Publication Mobile Information Systems Abbreviated Journal Mobile Information Systems  
  Volume 3 Issue 9 Pages 261-280  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) IOS Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1574-017x (Print) 1875-905X (Online) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Sapienza @ melatti @ Serial 109  
Permanent link to this record
 

 
Author Mari, Federico; Tronci, Enrico pdf  doi
openurl 
  Title CEGAR Based Bounded Model Checking of Discrete Time Hybrid Systems Type Conference Article
  Year 2007 Publication Hybrid Systems: Computation and Control (HSCC 2007) Abbreviated Journal  
  Volume Issue Pages 399-412  
  Keywords Model Checking, Abstraction, CEGAR, SAT, Hybrid Systems, DTHS  
  Abstract Many hybrid systems can be conveniently modeled as Piecewise Affine Discrete Time Hybrid Systems PA-DTHS. As well known Bounded Model Checking (BMC) for such systems comes down to solve a Mixed Integer Linear Programming (MILP) feasibility problem. We present a SAT based BMC algorithm for automatic verification of PA-DTHSs. Using Counterexample Guided Abstraction Refinement (CEGAR) our algorithm gradually transforms a PA-DTHS verification problem into larger and larger SAT problems. Our experimental results show that our approach can handle PA-DTHSs that are more then 50 times larger than those that can be handled using a MILP solver.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Editor Bemporad, A.; Bicchi, A.; Buttazzo, G.C.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 4416 Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ MarTro07 Serial 92  
Permanent link to this record
 

 
Author Della Penna, Giuseppe; Intrigila, Benedetto; Tronci, Enrico; Venturini Zilli, Marisa pdf  doi
openurl 
  Title Exploiting Transition Locality in the Disk Based Mur$\varphi$ Verifier Type Conference Article
  Year 2002 Publication 4th International Conference on Formal Methods in Computer-Aided Design (FMCAD) Abbreviated Journal  
  Volume Issue Pages 202-219  
  Keywords  
  Abstract The main obstruction to automatic verification of Finite State Systems is the huge amount of memory required to complete the verification task (state explosion). This motivates research on distributed as well as disk based verification algorithms. In this paper we present a disk based Breadth First Explicit State Space Exploration algorithm as well as an implementation of it within the Mur$\varphi$ verifier. Our algorithm exploits transition locality (i.e. the statistical fact that most transitions lead to unvisited states or to recently visited states) to decrease disk read accesses thus reducing the time overhead due to disk usage. A disk based verification algorithm for Mur$\varphi$ has been already proposed in the literature. To measure the time speed up due to locality exploitation we compared our algorithm with such previously proposed algorithm. Our experimental results show that our disk based verification algorithm is typically more than 10 times faster than such previously proposed disk based verification algorithm. To measure the time overhead due to disk usage we compared our algorithm with RAM based verification using the (standard) Mur$\varphi$ verifier with enough memory to complete the verification task. Our experimental results show that even when using 1/10 of the RAM needed to complete verification, our disk based algorithm is only between 1.4 and 5.3 times (3 times on average) slower than (RAM) Mur$\varphi$ with enough RAM memory to complete the verification task at hand. Using our disk based Mur$\varphi$ we were able to complete verification of a protocol with about $10^9$ reachable states. This would require more than 5 gigabytes of RAM using RAM based Mur$\varphi$.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Portland, OR, USA Editor Aagaard, M.; O'Leary, J.W.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 2517 Series Issue Edition  
  ISSN 3-540-00116-6 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ fmcad02 Serial 41  
Permanent link to this record
 

 
Author Tronci, Enrico; Della Penna, Giuseppe; Intrigila, Benedetto; Venturini Zilli, Marisa pdf  doi
openurl 
  Title Exploiting Transition Locality in Automatic Verification Type Conference Article
  Year 2001 Publication 11th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware Design and Verification Methods (CHARME) Abbreviated Journal  
  Volume Issue Pages 259-274  
  Keywords  
  Abstract In this paper we present an algorithm to contrast state explosion when using Explicit State Space Exploration to verify protocols. We show experimentally that protocols exhibit transition locality. We present a verification algorithm that exploits transition locality as well as an implementation of it within the Mur$\varphi$ verifier. Our algorithm is compatible with all Breadth First (BF) optimization techniques present in the Mur$\varphi$ verifier and it is by no means a substitute for any of them. In fact, since our algorithm trades space with time, it is typically most useful when one runs out of memory and has already used all other state reduction techniques present in the Mur$\varphi$ verifier. Our experimental results show that using our approach we can typically save more than 40% of RAM with an average time penalty of about 50% when using (Mur$\varphi$) bit compression and 100% when using bit compression and hash compaction.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Livingston, Scotland, UK Editor Margaria, T.; Melham, T.F.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 2144 Series Issue Edition  
  ISSN 3-540-42541-1 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ charme01 Serial 44  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico; Alvisi, Lorenzo; Clement, Allen; Li, Harry pdf  doi
openurl 
  Title Model Checking Coalition Nash Equilibria in MAD Distributed Systems Type Conference Article
  Year 2009 Publication Stabilization, Safety, and Security of Distributed Systems, 11th International Symposium, SSS 2009, Lyon, France, November 3-6, 2009. Proceedings Abbreviated Journal  
  Volume Issue Pages 531-546  
  Keywords  
  Abstract We present two OBDD based model checking algorithms for the verification of Nash equilibria in finite state mechanisms modeling Multiple Administrative Domains (MAD) distributed systems with possibly colluding agents (coalitions) and with possibly faulty or malicious nodes (Byzantine agents). Given a finite state mechanism, a proposed protocol for each agent and the maximum sizes f for Byzantine agents and q for agents collusions, our model checkers return Pass if the proposed protocol is an ε-f-q-Nash equilibrium, i.e. no coalition of size up to q may have an interest greater than ε in deviating from the proposed protocol when up to f Byzantine agents are present, Fail otherwise. We implemented our model checking algorithms within the NuSMV model checker: the first one explicitly checks equilibria for each coalition, while the second represents symbolically all coalitions. We present experimental results showing their effectiveness for moderate size mechanisms. For example, we can verify coalition Nash equilibria for mechanisms which corresponding normal form games would have more than $5 \times 10^21$ entries. Moreover, we compare the two approaches, and the explicit algorithm turns out to outperform the symbolic one. To the best of our knowledge, no model checking algorithm for verification of Nash equilibria of mechanisms with coalitions has been previously published.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Editor Guerraoui, R.; Petit, F.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 5873 Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ sss09 Serial 19  
Permanent link to this record
 

 
Author Della Penna, Giuseppe; Intrigila, Benedetto; Melatti, Igor; Tronci, Enrico; Venturini Zilli, Marisa pdf  doi
openurl 
  Title Finite Horizon Analysis of Markov Chains with the Mur$\varphi$ Verifier Type Conference Article
  Year 2003 Publication Correct Hardware Design and Verification Methods, 12th IFIP WG 10.5 Advanced Research Working Conference, CHARME 2003, L'Aquila, Italy, October 21-24, 2003, Proceedings Abbreviated Journal  
  Volume Issue Pages 394-409  
  Keywords  
  Abstract In this paper we present an explicit disk based verification algorithm for Probabilistic Systems defining discrete time/finite state Markov Chains. Given a Markov Chain and an integer k (horizon), our algorithm checks whether the probability of reaching an error state in at most k steps is below a given threshold. We present an implementation of our algorithm within a suitable extension of the Mur$\varphi$ verifier. We call the resulting probabilistic model checker FHP-Mur$\varphi$ (Finite Horizon Probabilistic Mur$\varphi$). We present experimental results comparing FHP-Mur$\varphi$ with (a finite horizon subset of) PRISM, a state-of-the-art symbolic model checker for Markov Chains. Our experimental results show that FHP-Mur$\varphi$ can handle systems that are out of reach for PRISM, namely those involving arithmetic operations on the state variables (e.g. hybrid systems).  
  Address  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Editor Geist, D.; Tronci, E.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 2860 Series Issue Edition  
  ISSN 3-540-20363-X ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Dimtz03 Serial 84  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: