toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico pdf  doi
openurl 
  Title Synthesis of Quantized Feedback Control Software for Discrete Time Linear Hybrid Systems Type Conference Article
  Year 2010 Publication Computer Aided Verification Abbreviated Journal  
  Volume Issue Pages 180-195  
  Keywords  
  Abstract We present an algorithm that given a Discrete Time Linear Hybrid System returns a correct-by-construction software implementation K for a (near time optimal) robust quantized feedback controller for along with the set of states on which K is guaranteed to work correctly (controllable region). Furthermore, K has a Worst Case Execution Time linear in the number of bits of the quantization schema.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin / Heidelberg Place of Publication Editor Touili, T.; Cook, B.; Jackson, P.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 6174 Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ cav2010 Serial (down) 16  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico pdf  url
openurl 
  Title From Boolean Relations to Control Software Type Conference Article
  Year 2011 Publication Proceedings of ICSEA 2011, The Sixth International Conference on Software Engineering Advances Abbreviated Journal  
  Volume Issue Pages 528-533  
  Keywords  
  Abstract Many software as well digital hardware automatic synthesis methods define the set of implementations meeting the given system specifications with a boolean relation K. In such a context a fundamental step in the software (hardware) synthesis process is finding effective solutions to the functional equation defined by K. This entails finding a (set of) boolean function(s) F (typically represented using OBDDs, Ordered Binary Decision Diagrams) such that: 1) for all x for which K is satisfiable, K(x, F(x)) = 1 holds; 2) the implementation of F is efficient with respect to given implementation parameters such as code size or execution time. While this problem has been widely studied in digital hardware synthesis, little has been done in a software synthesis context. Unfortunately the approaches developed for hardware synthesis cannot be directly used in a software context. This motivates investigation of effective methods to solve the above problem when F has to be implemented with software. In this paper we present an algorithm that, from an OBDD representation for K, generates a C code implementation for F that has the same size as the OBDD for F and a WCET (Worst Case Execution Time) linear in nr, being n = |x| the number of input arguments for functions in F and r the number of functions in F.  
  Address  
  Corporate Author Thesis  
  Publisher ThinkMind Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-61208-165-6 ISBN Medium  
  Area Expedition Conference  
  Notes Best Paper Award Approved yes  
  Call Number Sapienza @ mari @ icsea11 Serial (down) 14  
Permanent link to this record
 

 
Author Cavaliere, Federico; Mari, Federico; Melatti, Igor; Minei, Giovanni; Salvo, Ivano; Tronci, Enrico; Verzino, Giovanni; Yushtein, Yuri pdf  openurl
  Title Model Checking Satellite Operational Procedures Type Conference Article
  Year 2011 Publication DAta Systems In Aerospace (DASIA), Org. EuroSpace, Canadian Space Agency, CNES, ESA, EUMETSAT. San Anton, Malta, EuroSpace. Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We present a model checking approach for the automatic verification of satellite operational procedures (OPs). Building a model for a complex system as a satellite is a hard task. We overcome this obstruction by using a suitable simulator (SIMSAT) for the satellite. Our approach aims at improving OP quality assurance by automatic exhaustive exploration of all possible simulation scenarios. Moreover, our solution decreases OP verification costs by using a model checker (CMurphi) to automatically drive the simulator. We model OPs as user-executed programs observing the simulator telemetries and sending telecommands to the simulator. In order to assess feasibility of our approach we present experimental results on a simple meaningful scenario. Our results show that we can save up to 90% of verification time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Dasia11 Serial (down) 13  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: