|   | 
Details
   web
Records
Author Alimguzhin, Vadim; Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title (down) On Model Based Synthesis of Embedded Control Software Type Conference Article
Year 2012 Publication Proceedings of the 12th International Conference on Embedded Software, EMSOFT 2012, part of the Eighth Embedded Systems Week, ESWeek 2012, Tampere, Finland, October 7-12, 2012 Abbreviated Journal
Volume Issue Pages 227-236
Keywords
Abstract
Address
Corporate Author Thesis
Publisher ACM Place of Publication Editor Ahmed Jerraya and Luca P. Carloni and Florence Maraninchi and John Regehr
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-4503-1425-1 Medium
Area Expedition Conference
Notes Techreport version can be found at arxiv.org Approved yes
Call Number Sapienza @ mari @ emsoft12 Serial 97
Permanent link to this record
 

 
Author Mancini, T. ; Mari, F.; Massini, A.; Melatti, I.; Salvo, I.; Tronci, E.
Title (down) On minimising the maximum expected verification time Type Journal Article
Year 2017 Publication Information Processing Letters Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Sapienza @ mari @ Serial 163
Permanent link to this record
 

 
Author Mancini, T.; Mari, F.; Massini, A.; Melatti, I.; Tronci, E.
Title (down) On Checking Equivalence of Simulation Scripts Type Journal Article
Year 2021 Publication Journal of Logical and Algebraic Methods in Programming Abbreviated Journal
Volume Issue Pages 100640
Keywords Formal verification, Simulation based formal verification, Formal Verification of cyber-physical systems, System-level formal verification
Abstract To support Model Based Design of Cyber-Physical Systems (CPSs) many simulation based approaches to System Level Formal Verification (SLFV) have been devised. Basically, these are Bounded Model Checking approaches (since simulation horizon is of course bounded) relying on simulators to compute the system dynamics and thereby verify the given system properties. The main obstacle to simulation based SLFV is the large number of simulation scenarios to be considered and thus the huge amount of simulation time needed to complete the verification task. To save on computation time, simulation based SLFV approaches exploit the capability of simulators to save and restore simulation states. Essentially, such a time saving is obtained by optimising the simulation script defining the simulation activity needed to carry out the verification task. Although such approaches aim to (bounded) formal verification, as a matter of fact, the proof of correctness of the methods to optimise simulation scripts basically relies on an intuitive semantics for simulation scripting languages. This hampers the possibility of formally showing that the optimisations introduced to speed up the simulation activity do not actually omit checking of relevant behaviours for the system under verification. The aim of this paper is to fill the above gap by presenting an operational semantics for simulation scripting languages and by proving soundness and completeness properties for it. This, in turn, enables formal proofs of equivalence between unoptimised and optimised simulation scripts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-2208 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MCLab @ davi @ Mancini2021100640 Serial 183
Permanent link to this record
 

 
Author Cavaliere, Federico; Mari, Federico; Melatti, Igor; Minei, Giovanni; Salvo, Ivano; Tronci, Enrico; Verzino, Giovanni; Yushtein, Yuri
Title (down) Model Checking Satellite Operational Procedures Type Conference Article
Year 2011 Publication DAta Systems In Aerospace (DASIA), Org. EuroSpace, Canadian Space Agency, CNES, ESA, EUMETSAT. San Anton, Malta, EuroSpace. Abbreviated Journal
Volume Issue Pages
Keywords
Abstract We present a model checking approach for the automatic verification of satellite operational procedures (OPs). Building a model for a complex system as a satellite is a hard task. We overcome this obstruction by using a suitable simulator (SIMSAT) for the satellite. Our approach aims at improving OP quality assurance by automatic exhaustive exploration of all possible simulation scenarios. Moreover, our solution decreases OP verification costs by using a model checker (CMurphi) to automatically drive the simulator. We model OPs as user-executed programs observing the simulator telemetries and sending telecommands to the simulator. In order to assess feasibility of our approach we present experimental results on a simple meaningful scenario. Our results show that we can save up to 90% of verification time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Dasia11 Serial 13
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico; Alvisi, Lorenzo; Clement, Allen; Li, Harry
Title (down) Model Checking Nash Equilibria in MAD Distributed Systems Type Conference Article
Year 2008 Publication FMCAD '08: Proceedings of the 2008 International Conference on Formal Methods in Computer-Aided Design Abbreviated Journal
Volume Issue Pages 1-8
Keywords Model Checking, MAD Distributed System, Nash Equilibrium
Abstract We present a symbolic model checking algorithm for verification of Nash equilibria in finite state mechanisms modeling Multiple Administrative Domains (MAD) distributed systems. Given a finite state mechanism, a proposed protocol for each agent and an indifference threshold for rewards, our model checker returns PASS if the proposed protocol is a Nash equilibrium (up to the given indifference threshold) for the given mechanism, FAIL otherwise. We implemented our model checking algorithm inside the NuSMV model checker and present experimental results showing its effectiveness for moderate size mechanisms. For example, we can handle mechanisms which corresponding normal form games would have more than $10^20$ entries. To the best of our knowledge, no model checking algorithm for verification of mechanism Nash equilibria has been previously published.
Address
Corporate Author Thesis
Publisher IEEE Press Place of Publication Piscataway, NJ, USA Editor Cimatti, A.; Jones, R.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-4244-2735-2 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ MarMelSalTroAlvCle08 Serial 93
Permanent link to this record
 

 
Author Verzino Giovanni ; Cavaliere, Federico; Mari, Federico; Melatti, Igor; Minei, Giovanni; Salvo, Ivano; Yushtein, Yuri; Tronci, Enrico
Title (down) Model checking driven simulation of sat procedures Type Conference Article
Year 2012 Publication Proceedings of 12th International Conference on Space Operations (SpaceOps 2012) Abbreviated Journal International Conference on Space Operations
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Sapienza @ melatti @ Serial 117
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico; Alvisi, Lorenzo; Clement, Allen; Li, Harry
Title (down) Model Checking Coalition Nash Equilibria in MAD Distributed Systems Type Conference Article
Year 2009 Publication Stabilization, Safety, and Security of Distributed Systems, 11th International Symposium, SSS 2009, Lyon, France, November 3-6, 2009. Proceedings Abbreviated Journal
Volume Issue Pages 531-546
Keywords
Abstract We present two OBDD based model checking algorithms for the verification of Nash equilibria in finite state mechanisms modeling Multiple Administrative Domains (MAD) distributed systems with possibly colluding agents (coalitions) and with possibly faulty or malicious nodes (Byzantine agents). Given a finite state mechanism, a proposed protocol for each agent and the maximum sizes f for Byzantine agents and q for agents collusions, our model checkers return Pass if the proposed protocol is an ε-f-q-Nash equilibrium, i.e. no coalition of size up to q may have an interest greater than ε in deviating from the proposed protocol when up to f Byzantine agents are present, Fail otherwise. We implemented our model checking algorithms within the NuSMV model checker: the first one explicitly checks equilibria for each coalition, while the second represents symbolically all coalitions. We present experimental results showing their effectiveness for moderate size mechanisms. For example, we can verify coalition Nash equilibria for mechanisms which corresponding normal form games would have more than $5 \times 10^21$ entries. Moreover, we compare the two approaches, and the explicit algorithm turns out to outperform the symbolic one. To the best of our knowledge, no model checking algorithm for verification of Nash equilibria of mechanisms with coalitions has been previously published.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor Guerraoui, R.; Petit, F.
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 5873 Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ sss09 Serial 19
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title (down) Model Based Synthesis of Control Software from System Level Formal Specifications Type Report
Year 2013 Publication Abbreviated Journal
Volume abs/1107.5638 Issue Pages
Keywords
Abstract Many Embedded Systems are indeed Software Based Control Systems, that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of embedded systems control software.
We present an algorithm, along with a tool QKS implementing it, that from a formal model (as a Discrete Time Linear Hybrid System) of the controlled system (plant), implementation specifications (that is, number of bits in the Analog-to-Digital, AD, conversion) and System Level Formal Specifications (that is, safety and liveness requirements for the closed loop system) returns correct-by-construction control software that has a Worst Case Execution Time (WCET) linear in the number of AD bits and meets the given specifications.
We show feasibility of our approach by presenting experimental results on using it to synthesize control software for a buck DC-DC converter, a widely used mixed-mode analog circuit, and for the inverted pendulum.
Address
Corporate Author Thesis
Publisher CoRR, Technical Report Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Serial 104
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title (down) Model Based Synthesis of Control Software from System Level Formal Specifications Type Journal Article
Year 2014 Publication ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY Abbreviated Journal ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY
Volume 23 Issue 1 Pages Article 6
Keywords
Abstract
Address
Corporate Author Thesis
Publisher ACM Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1049-331X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Sapienza @ melatti @ Serial 110
Permanent link to this record
 

 
Author Coppo, Mario; Dezani-Ciancaglini, Mariangiola; Giovannetti, Elio; Salvo, Ivano
Title (down) Mobility Types for Mobile Processes in Mobile Ambients Type Journal Article
Year 2003 Publication Electr. Notes Theor. Comput. Sci. Abbreviated Journal
Volume 78 Issue Pages
Keywords
Abstract We present an ambient-like calculus in which the open capability is dropped, and a new form of “lightweight  process mobility is introduced. The calculus comes equipped with a type system that allows the kind of values exchanged in communications and the access and mobility properties of processes to be controlled. A type inference procedure determines the “minimal  requirements to accept a system or a component as well typed. This gives a kind of principal typing. As an expressiveness test, we show that some well known calculi of concurrency and mobility can be encoded in our calculus in a natural way.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Coppo-Dezani-Giovannetti-Salvo:03 Serial 74
Permanent link to this record