|   | 
Details
   web
Records
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title (up) Linear Constraints and Guarded Predicates as a Modeling Language for Discrete Time Hybrid Systems Type Journal Article
Year 2013 Publication International Journal on Advances in Software Abbreviated Journal Intern. Journal on Advances in SW
Volume vol. 6, nr 1&2 Issue Pages 155-169
Keywords Model-based software design; Linear predicates; Hybrid systems
Abstract Model based design is particularly appealing in
software based control systems (e.g., embedded
software) design, since in such a case system
level specifications are much easier to define
than the control software behavior itself. In
turn, model based design of embedded systems
requires modeling both continuous subsystems
(typically, the plant) as well as discrete
subsystems (the controller). This is typically
done using hybrid systems. Mixed Integer Linear
Programming (MILP) based abstraction techniques
have been successfully applied to automatically
synthesize correct-by-construction control
software for discrete time linear hybrid systems,
where plant dynamics is modeled as a linear
predicate over state, input, and next state
variables. Unfortunately, MILP solvers require
such linear predicates to be conjunctions of
linear constraints, which is not a natural way of
modeling hybrid systems. In this paper we show
that, under the hypothesis that each variable
ranges over a bounded interval, any linear
predicate built upon conjunction and disjunction
of linear constraints can be automatically
translated into an equivalent conjunctive
predicate. Since variable bounds play a key role
in this translation, our algorithm includes a
procedure to compute all implicit variable bounds
of the given linear predicate. Furthermore, we
show that a particular form of linear predicates,
namely guarded predicates, are a natural and
powerful language to succinctly model discrete
time linear hybrid systems dynamics. Finally, we
experimentally show the feasibility of our
approach on an important and challenging case
study taken from the literature, namely the
multi-input Buck DC-DC Converter. As an example,
the guarded predicate that models (with 57
constraints) a 6-inputs Buck DC-DC Converter is
translated in a conjunctive predicate (with 102
linear constraints) in about 40 minutes.
Address
Corporate Author Thesis
Publisher IARIA Place of Publication Editor Luigi Lavazza
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1942-2628 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ melatti @ Serial 115
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title (up) Linear Constraints as a Modeling Language for Discrete Time Hybrid Systems Type Conference Article
Year 2012 Publication Proceedings of ICSEA 2012, The Seventh International Conference on Software Engineering Advances Abbreviated Journal
Volume Issue Pages 664-671
Keywords
Abstract
Address
Corporate Author Thesis
Publisher ThinkMind Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ icsea12 Serial 98
Permanent link to this record
 

 
Author Alimguzhin, V.; Mari, F.; Melatti, I.; Salvo, I.; Tronci, E.
Title (up) Linearising Discrete Time Hybrid Systems Type Journal Article
Year 2017 Publication IEEE Transactions on Automatic Control Abbreviated Journal
Volume 62 Issue 10 Pages 5357-5364
Keywords
Abstract Model Based Design approaches for embedded systems aim at generating correct-by-construction control software, guaranteeing that the closed loop system (controller and plant) meets given system level formal specifications. This technical note addresses control synthesis for safety and reachability properties of possibly non-linear discrete time hybrid systems. By means of syntactical transformations that require non-linear terms to be Lipschitz continuous functions, we over-approximate non-linear dynamics with a linear system whose controllers are guaranteed to be controllers of the original system. We evaluate performance of our approach on meaningful control synthesis benchmarks, also comparing it to a state-of-the-art tool.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9286 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Sapienza @ mari @ ref7902199 Serial 164
Permanent link to this record
 

 
Author Coppo, Mario; Dezani-Ciancaglini, Mariangiola; Giovannetti, Elio; Salvo, Ivano
Title (up) Mobility Types for Mobile Processes in Mobile Ambients Type Journal Article
Year 2003 Publication Electr. Notes Theor. Comput. Sci. Abbreviated Journal
Volume 78 Issue Pages
Keywords
Abstract We present an ambient-like calculus in which the open capability is dropped, and a new form of “lightweight†process mobility is introduced. The calculus comes equipped with a type system that allows the kind of values exchanged in communications and the access and mobility properties of processes to be controlled. A type inference procedure determines the “minimal†requirements to accept a system or a component as well typed. This gives a kind of principal typing. As an expressiveness test, we show that some well known calculi of concurrency and mobility can be encoded in our calculus in a natural way.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Coppo-Dezani-Giovannetti-Salvo:03 Serial 74
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title (up) Model Based Synthesis of Control Software from System Level Formal Specifications Type Journal Article
Year 2014 Publication ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY Abbreviated Journal ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY
Volume 23 Issue 1 Pages Article 6
Keywords
Abstract
Address
Corporate Author Thesis
Publisher ACM Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1049-331X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Sapienza @ melatti @ Serial 110
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title (up) Model Based Synthesis of Control Software from System Level Formal Specifications Type Report
Year 2013 Publication Abbreviated Journal
Volume abs/1107.5638 Issue Pages
Keywords
Abstract Many Embedded Systems are indeed Software Based Control Systems, that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of embedded systems control software.
We present an algorithm, along with a tool QKS implementing it, that from a formal model (as a Discrete Time Linear Hybrid System) of the controlled system (plant), implementation specifications (that is, number of bits in the Analog-to-Digital, AD, conversion) and System Level Formal Specifications (that is, safety and liveness requirements for the closed loop system) returns correct-by-construction control software that has a Worst Case Execution Time (WCET) linear in the number of AD bits and meets the given specifications.
We show feasibility of our approach by presenting experimental results on using it to synthesize control software for a buck DC-DC converter, a widely used mixed-mode analog circuit, and for the inverted pendulum.
Address
Corporate Author Thesis
Publisher CoRR, Technical Report Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Serial 104
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico; Alvisi, Lorenzo; Clement, Allen; Li, Harry
Title (up) Model Checking Coalition Nash Equilibria in MAD Distributed Systems Type Conference Article
Year 2009 Publication Stabilization, Safety, and Security of Distributed Systems, 11th International Symposium, SSS 2009, Lyon, France, November 3-6, 2009. Proceedings Abbreviated Journal
Volume Issue Pages 531-546
Keywords
Abstract We present two OBDD based model checking algorithms for the verification of Nash equilibria in finite state mechanisms modeling Multiple Administrative Domains (MAD) distributed systems with possibly colluding agents (coalitions) and with possibly faulty or malicious nodes (Byzantine agents). Given a finite state mechanism, a proposed protocol for each agent and the maximum sizes f for Byzantine agents and q for agents collusions, our model checkers return Pass if the proposed protocol is an ε-f-q-Nash equilibrium, i.e. no coalition of size up to q may have an interest greater than ε in deviating from the proposed protocol when up to f Byzantine agents are present, Fail otherwise. We implemented our model checking algorithms within the NuSMV model checker: the first one explicitly checks equilibria for each coalition, while the second represents symbolically all coalitions. We present experimental results showing their effectiveness for moderate size mechanisms. For example, we can verify coalition Nash equilibria for mechanisms which corresponding normal form games would have more than $5 \times 10^21$ entries. Moreover, we compare the two approaches, and the explicit algorithm turns out to outperform the symbolic one. To the best of our knowledge, no model checking algorithm for verification of Nash equilibria of mechanisms with coalitions has been previously published.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor Guerraoui, R.; Petit, F.
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 5873 Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ sss09 Serial 19
Permanent link to this record
 

 
Author Verzino Giovanni ; Cavaliere, Federico; Mari, Federico; Melatti, Igor; Minei, Giovanni; Salvo, Ivano; Yushtein, Yuri; Tronci, Enrico
Title (up) Model checking driven simulation of sat procedures Type Conference Article
Year 2012 Publication Proceedings of 12th International Conference on Space Operations (SpaceOps 2012) Abbreviated Journal International Conference on Space Operations
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Sapienza @ melatti @ Serial 117
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico; Alvisi, Lorenzo; Clement, Allen; Li, Harry
Title (up) Model Checking Nash Equilibria in MAD Distributed Systems Type Conference Article
Year 2008 Publication FMCAD '08: Proceedings of the 2008 International Conference on Formal Methods in Computer-Aided Design Abbreviated Journal
Volume Issue Pages 1-8
Keywords Model Checking, MAD Distributed System, Nash Equilibrium
Abstract We present a symbolic model checking algorithm for verification of Nash equilibria in finite state mechanisms modeling Multiple Administrative Domains (MAD) distributed systems. Given a finite state mechanism, a proposed protocol for each agent and an indifference threshold for rewards, our model checker returns PASS if the proposed protocol is a Nash equilibrium (up to the given indifference threshold) for the given mechanism, FAIL otherwise. We implemented our model checking algorithm inside the NuSMV model checker and present experimental results showing its effectiveness for moderate size mechanisms. For example, we can handle mechanisms which corresponding normal form games would have more than $10^20$ entries. To the best of our knowledge, no model checking algorithm for verification of mechanism Nash equilibria has been previously published.
Address
Corporate Author Thesis
Publisher IEEE Press Place of Publication Piscataway, NJ, USA Editor Cimatti, A.; Jones, R.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-4244-2735-2 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ MarMelSalTroAlvCle08 Serial 93
Permanent link to this record
 

 
Author Cavaliere, Federico; Mari, Federico; Melatti, Igor; Minei, Giovanni; Salvo, Ivano; Tronci, Enrico; Verzino, Giovanni; Yushtein, Yuri
Title (up) Model Checking Satellite Operational Procedures Type Conference Article
Year 2011 Publication DAta Systems In Aerospace (DASIA), Org. EuroSpace, Canadian Space Agency, CNES, ESA, EUMETSAT. San Anton, Malta, EuroSpace. Abbreviated Journal
Volume Issue Pages
Keywords
Abstract We present a model checking approach for the automatic verification of satellite operational procedures (OPs). Building a model for a complex system as a satellite is a hard task. We overcome this obstruction by using a suitable simulator (SIMSAT) for the satellite. Our approach aims at improving OP quality assurance by automatic exhaustive exploration of all possible simulation scenarios. Moreover, our solution decreases OP verification costs by using a model checker (CMurphi) to automatically drive the simulator. We model OPs as user-executed programs observing the simulator telemetries and sending telecommands to the simulator. In order to assess feasibility of our approach we present experimental results on a simple meaningful scenario. Our results show that we can save up to 90% of verification time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Dasia11 Serial 13
Permanent link to this record