toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Della Penna, Giuseppe; Intrigila, Benedetto; Tronci, Enrico; Venturini Zilli, Marisa pdf  doi
openurl 
  Title Exploiting Transition Locality in the Disk Based Mur$\varphi$ Verifier Type (down) Conference Article
  Year 2002 Publication 4th International Conference on Formal Methods in Computer-Aided Design (FMCAD) Abbreviated Journal  
  Volume Issue Pages 202-219  
  Keywords  
  Abstract The main obstruction to automatic verification of Finite State Systems is the huge amount of memory required to complete the verification task (state explosion). This motivates research on distributed as well as disk based verification algorithms. In this paper we present a disk based Breadth First Explicit State Space Exploration algorithm as well as an implementation of it within the Mur$\varphi$ verifier. Our algorithm exploits transition locality (i.e. the statistical fact that most transitions lead to unvisited states or to recently visited states) to decrease disk read accesses thus reducing the time overhead due to disk usage. A disk based verification algorithm for Mur$\varphi$ has been already proposed in the literature. To measure the time speed up due to locality exploitation we compared our algorithm with such previously proposed algorithm. Our experimental results show that our disk based verification algorithm is typically more than 10 times faster than such previously proposed disk based verification algorithm. To measure the time overhead due to disk usage we compared our algorithm with RAM based verification using the (standard) Mur$\varphi$ verifier with enough memory to complete the verification task. Our experimental results show that even when using 1/10 of the RAM needed to complete verification, our disk based algorithm is only between 1.4 and 5.3 times (3 times on average) slower than (RAM) Mur$\varphi$ with enough RAM memory to complete the verification task at hand. Using our disk based Mur$\varphi$ we were able to complete verification of a protocol with about $10^9$ reachable states. This would require more than 5 gigabytes of RAM using RAM based Mur$\varphi$.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Portland, OR, USA Editor Aagaard, M.; O'Leary, J.W.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 2517 Series Issue Edition  
  ISSN 3-540-00116-6 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ fmcad02 Serial 41  
Permanent link to this record
 

 
Author Verzino Giovanni ; Cavaliere, Federico; Mari, Federico; Melatti, Igor; Minei, Giovanni; Salvo, Ivano; Yushtein, Yuri; Tronci, Enrico pdf  doi
openurl 
  Title Model checking driven simulation of sat procedures Type (down) Conference Article
  Year 2012 Publication Proceedings of 12th International Conference on Space Operations (SpaceOps 2012) Abbreviated Journal International Conference on Space Operations  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Sapienza @ melatti @ Serial 117  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico pdf  doi
isbn  openurl
  Title Undecidability of Quantized State Feedback Control for Discrete Time Linear Hybrid Systems Type (down) Book Chapter
  Year 2012 Publication Theoretical Aspects of Computing – ICTAC 2012 Abbreviated Journal  
  Volume Issue Pages 243-258  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Roychoudhury, A.; D'Souza, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 7521 Series Issue Edition  
  ISSN ISBN 978-3-642-32942-5 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Mari2012 Serial 99  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: