toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Maggioli, F.; Mancini, T.; Tronci, E. pdf  url
doi  openurl
  Title SBML2Modelica: Integrating biochemical models within open-standard simulation ecosystems Type Journal Article
  Year 2019 Publication Bioinformatics Abbreviated Journal  
  Volume 36 Issue 7 Pages 21652172  
  Keywords  
  Abstract SBML is the most widespread language for the definition of biochemical models. Although dozens of SBML simulators are available, there is a general lack of support to the integration of SBML models within open-standard general-purpose simulation ecosystems. This hinders co-simulation and integration of SBML models within larger model networks, in order to, e.g., enable in-silico clinical trials of drugs, pharmacological protocols, or engineering artefacts such as biomedical devices against Virtual Physiological Human models.Modelica is one of the most popular existing open-standard general-purpose simulation languages, supported by many simulators. Modelica models are especially suited for the definition of complex networks of heterogeneous models from virtually all application domains. Models written in Modelica (and in 100+ other languages) can be readily exported into black-box Functional Mock-Up Units (FMUs), and seamlessly co-simulated and integrated into larger model networks within open-standard language-independent simulation ecosystems.In order to enable SBML model integration within heterogeneous model networks, we present SBML2Modelica, a software system translating SBML models into well-structured, user-intelligible, easily modifiable Modelica models. SBML2Modelica is SBML Level 3 Version 2 -compliant and succeeds on 96.47% of the SBML Test Suite Core (with a few rare, intricate, and easily avoidable combinations of constructs unsupported and cleanly signalled to the user). Our experimental campaign on 613 models from the BioModels database (with up to 5438 variables) shows that the major open-source (general-purpose) Modelica and FMU simulators achieve performance comparable to state-of-the-art specialised SBML simulators.SBML2Modelica is written in Java and is freely available for non-commercial use at https://bitbucket.org/mclab/sbml2modelica  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-4803 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MCLab @ davi @ ref10.1093/bioinformatics/btz860 Serial 179  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: