toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Mancini, T.; Mari, F.; Massini, A.; Melatti, I.; Tronci, E. pdf  url
doi  openurl
  Title On Checking Equivalence of Simulation Scripts Type Journal Article
  Year 2021 Publication Journal of Logical and Algebraic Methods in Programming Abbreviated Journal  
  Volume Issue Pages 100640  
  Keywords Formal verification, Simulation based formal verification, Formal Verification of cyber-physical systems, System-level formal verification  
  Abstract To support Model Based Design of Cyber-Physical Systems (CPSs) many simulation based approaches to System Level Formal Verification (SLFV) have been devised. Basically, these are Bounded Model Checking approaches (since simulation horizon is of course bounded) relying on simulators to compute the system dynamics and thereby verify the given system properties. The main obstacle to simulation based SLFV is the large number of simulation scenarios to be considered and thus the huge amount of simulation time needed to complete the verification task. To save on computation time, simulation based SLFV approaches exploit the capability of simulators to save and restore simulation states. Essentially, such a time saving is obtained by optimising the simulation script defining the simulation activity needed to carry out the verification task. Although such approaches aim to (bounded) formal verification, as a matter of fact, the proof of correctness of the methods to optimise simulation scripts basically relies on an intuitive semantics for simulation scripting languages. This hampers the possibility of formally showing that the optimisations introduced to speed up the simulation activity do not actually omit checking of relevant behaviours for the system under verification. The aim of this paper is to fill the above gap by presenting an operational semantics for simulation scripting languages and by proving soundness and completeness properties for it. This, in turn, enables formal proofs of equivalence between unoptimised and optimised simulation scripts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-2208 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MCLab @ davi @ Mancini2021100640 Serial 183  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: