|   | 
Details
   web
Records
Author Tronci, Enrico
Title Optimal Finite State Supervisory Control Type Conference Article
Year 1996 Publication CDC '96: Proceedings of the 35th IEEE International Conference on Decision and Control Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Supervisory Controllers are Discrete Event Dynamic Systems (DEDSs) forming the discrete core of a Hybrid Control System. We address the problem of automatic synthesis of Optimal Finite State Supervisory Controllers (OSCs). We show that Boolean First Order Logic (BFOL) and Binary Decision Diagrams (BDDs) are an effective methodological and practical framework for Optimal Finite State Supervisory Control. Using BFOL programs (i.e. systems of boolean functional equations) and BDDs we give a symbolic (i.e. BDD based) algorithm for automatic synthesis of OSCs. Our OSC synthesis algorithm can handle arbitrary sets of final states as well as plant transition relations containing loops and uncontrollable events (e.g. failures). We report on experimental results on the use of our OSC synthesis algorithm to synthesize a C program implementing a minimum fuel OSC for two autonomous vehicles moving on a 4 x 4 grid.
Address
Corporate Author Thesis
Publisher IEEE Computer Society Place of Publication Washington, DC, USA Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ cdc96 Serial 67
Permanent link to this record
 

 
Author Intrigila, Benedetto; Magazzeni, Daniele; Melatti, Igor; Tronci, Enrico
Title A Model Checking Technique for the Verification of Fuzzy Control Systems Type Conference Article
Year 2005 Publication CIMCA '05: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce Vol-1 (CIMCA-IAWTIC'06) Abbreviated Journal
Volume Issue Pages 536-542
Keywords
Abstract Fuzzy control is well known as a powerful technique for designing and realizing control systems. However, statistical evidence for their correct behavior may be not enough, even when it is based on a large number of samplings. In order to provide a more systematic verification process, the cell-to-cell mapping technology has been used in a number of cases as a verification tool for fuzzy control systems and, more recently, to assess their optimality and robustness. However, cell-to-cell mapping is typically limited in the number of cells it can explore. To overcome this limitation, in this paper we show how model checking techniques may be instead used to verify the correct behavior of a fuzzy control system. To this end, we use a modified version of theMurphi verifier, which ease the modeling phase by allowing to use finite precision real numbers and external C functions. In this way, also already designed simulators may be used for the verification phase. With respect to the cell mapping technique, our approach appears to be complementary; indeed, it explores a much larger number of states, at the cost of being less informative on the global dynamic of the system.
Address
Corporate Author Thesis
Publisher IEEE Computer Society Place of Publication Washington, DC, USA Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-7695-2504-0-01 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Immt05 Serial 75
Permanent link to this record
 

 
Author Brizzolari, Francesco; Melatti, Igor; Tronci, Enrico; Della Penna, Giuseppe
Title Disk Based Software Verification via Bounded Model Checking Type Conference Article
Year 2007 Publication APSEC '07: Proceedings of the 14th Asia-Pacific Software Engineering Conference Abbreviated Journal
Volume Issue Pages 358-365
Keywords
Abstract One of the most successful approach to automatic software verification is SAT based bounded model checking (BMC). One of the main factors limiting the size of programs that can be automatically verified via BMC is the huge number of clauses that the backend SAT solver has to process. In fact, because of this, the SAT solver may easily run out of RAM. We present two disk based algorithms that can considerably decrease the number of clauses that a BMC backend SAT solver has to process in RAM. Our experimental results show that using our disk based algorithms we can automatically verify programs that are out of reach for RAM based BMC.
Address
Corporate Author Thesis
Publisher IEEE Computer Society Place of Publication Washington, DC, USA Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-7695-3057-5 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Bmtd07 Serial 76
Permanent link to this record
 

 
Author Della Penna, Giuseppe; Di Marco, Antinisca; Intrigila, Benedetto; Melatti, Igor; Pierantonio, Alfonso
Title Interoperability mapping from XML schemas to ER diagrams Type Journal Article
Year 2006 Publication Data Knowl. Eng. Abbreviated Journal
Volume 59 Issue 1 Pages 166-188
Keywords
Abstract The eXtensible Markup Language (XML) is a de facto standard on the Internet and is now being used to exchange a variety of data structures. This leads to the problem of efficiently storing, querying and retrieving a great amount of data contained in XML documents. Unfortunately, XML data often need to coexist with historical data. At present, the best solution for storing XML into pre-existing data structures is to extract the information from the XML documents and adapt it to the data structures’ logical model (e.g., the relational model of a DBMS). In this paper, we introduce a technique called Xere (XML entity–relationship exchange) to assist the integration of XML data with other data sources. To this aim, we present an algorithm that maps XML schemas into entity–relationship diagrams, discuss its soundness and completeness and show its implementation in XSLT.
Address
Corporate Author Thesis
Publisher Elsevier Science Publishers B. V. Place of Publication Amsterdam, The Netherlands, The Netherlands Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-023x ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Ddimp06 Serial 77
Permanent link to this record
 

 
Author Melatti, Igor; Palmer, Robert; Sawaya, Geoffrey; Yang, Yu; Kirby, Robert Mike; Gopalakrishnan, Ganesh
Title Parallel and distributed model checking in Eddy Type Journal Article
Year 2009 Publication Int. J. Softw. Tools Technol. Transf. Abbreviated Journal
Volume 11 Issue 1 Pages 13-25
Keywords
Abstract Model checking of safety properties can be scaled up by pooling the CPU and memory resources of multiple computers. As compute clusters containing 100s of nodes, with each node realized using multi-core (e.g., 2) CPUs will be widespread, a model checker based on the parallel (shared memory) and distributed (message passing) paradigms will more efficiently use the hardware resources. Such a model checker can be designed by having each node employ two shared memory threads that run on the (typically) two CPUs of a node, with one thread responsible for state generation, and the other for efficient communication, including (1) performing overlapped asynchronous message passing, and (2) aggregating the states to be sent into larger chunks in order to improve communication network utilization. We present the design details of such a novel model checking architecture called Eddy. We describe the design rationale, details of how the threads interact and yield control, exchange messages, as well as detect termination. We have realized an instance of this architecture for the Murphi modeling language. Called Eddy_Murphi, we report its performance over the number of nodes as well as communication parameters such as those controlling state aggregation. Nearly linear reduction of compute time with increasing number of nodes is observed. Our thread task partition is done in such a way that it is modular, easy to port across different modeling languages, and easy to tune across a variety of platforms.
Address
Corporate Author Thesis
Publisher Springer-Verlag Place of Publication Berlin, Heidelberg Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-2779 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Mpsykg09 Serial 80
Permanent link to this record
 

 
Author Intrigila, Benedetto; Melatti, Igor; Tofani, Alberto; Macchiarelli, Guido
Title Computational models of myocardial endomysial collagen arrangement Type Journal Article
Year 2007 Publication Computer Methods and Programs in Biomedicine Abbreviated Journal
Volume 86 Issue 3 Pages 232-244
Keywords
Abstract Collagen extracellular matrix is one of the factors related to high passive stiffness of cardiac muscle. However, the architecture and the mechanical aspects of the cardiac collagen matrix are not completely known. In particular, endomysial collagen contribution to the passive mechanics of cardiac muscle as well as its micro anatomical arrangement is still a matter of debate. In order to investigate mechanical and structural properties of endomysial collagen, we consider two alternative computational models of some specific aspects of the cardiac muscle. These two models represent two different views of endomysial collagen distribution: (1) the traditional view and (2) a new view suggested by the data obtained from scanning electron microscopy (SEM) in NaOH macerated samples (a method for isolating collagen from the other tissue). We model the myocardial tissue as a net of spring elements representing the cardiomyocytes together with the endomysial collagen distribution. Each element is a viscous elastic spring, characterized by an elastic and a viscous constant. We connect these springs to imitate the interconnections between collagen fibers. Then we apply to the net of springs some external forces of suitable magnitude and direction, obtaining an extension of the net itself. In our setting, the ratio forces magnitude /net extension is intended to model the stress /strain ratio of a microscopical portion of the myocardial tissue. To solve the problem of the correct identification of the values of the different parameters involved, we use an artificial neural network approach. In particular, we use this technique to learn, given a distribution of external forces, the elastic constants of the springs needed to obtain a desired extension as an equilibrium position. Our experimental findings show that, in the model of collagen distribution structured according to the new view, a given stress /strain ratio (of the net of springs, in the sense specified above) is obtained with much smaller (w.r.t. the other model, corresponding to the traditional view) elasticity constants of the springs. This seems to indicate that by an appropriate structure, a given stiffness of the myocardial tissue can be obtained with endomysial collagen fibers of much smaller size.
Address
Corporate Author Thesis
Publisher Elsevier North-Holland, Inc. Place of Publication New York, NY, USA Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-2607 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Imtm07 Serial 82
Permanent link to this record
 

 
Author Della Penna, Giuseppe; Magazzeni, Daniele; Tofani, Alberto; Intrigila, Benedetto; Melatti, Igor; Tronci, Enrico
Title Automatic Synthesis of Robust Numerical Controllers Type Conference Article
Year 2007 Publication Icas '07 Abbreviated Journal
Volume Issue Pages 4
Keywords
Abstract A major problem of numerical controllers is their robustness, i.e. the state read from the plant may not be in the controller table, although it may be close to some states in the table. For continuous systems, this problem is typically handled by interpolation techniques. Unfortunately, when the plant contains both continuous and discrete variables, the interpolation approach does not work well. To cope with this kind of systems, we propose a general methodology that exploits explicit model checking in an innovative way to automatically synthesize a (time-) optimal numerical controller from a plant specification and apply an optimized strengthening algorithm only on the most significant states, in order to reach an acceptable robustness degree. We implemented all the algorithms within our CGMurphi tool, an extension of the well-known CMurphi verifier, and tested the effectiveness of our approach by applying it to the well-known truck and trailer obstacles avoidance problem.
Address
Corporate Author Thesis
Publisher IEEE Computer Society Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-7695-2859-5 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Dmtimt07 Serial 89
Permanent link to this record
 

 
Author Alimguzhin, Vadim; Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title Automatic Control Software Synthesis for Quantized Discrete Time Hybrid Systems Type Conference Article
Year 2012 Publication Proceedings of the 51th IEEE Conference on Decision and Control, CDC 2012, December 10-13, 2012, Maui, HI, USA Abbreviated Journal
Volume Issue Pages 6120-6125
Keywords
Abstract
Address
Corporate Author Thesis
Publisher IEEE Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-4673-2065-8 Medium
Area Expedition Conference
Notes Techreport version can be found at http://arxiv.org/abs/1207.4098 Approved yes
Call Number Sapienza @ mari @ cdc12 Serial 96
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title Linear Constraints as a Modeling Language for Discrete Time Hybrid Systems Type Conference Article
Year 2012 Publication Proceedings of ICSEA 2012, The Seventh International Conference on Software Engineering Advances Abbreviated Journal
Volume Issue Pages 664-671
Keywords
Abstract
Address
Corporate Author Thesis
Publisher ThinkMind Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ icsea12 Serial 98
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title Control Software Visualization Type Conference Article
Year 2012 Publication Proceedings of INFOCOMP 2012, The Second International Conference on Advanced Communications and Computation Abbreviated Journal
Volume Issue Pages 15-20
Keywords
Abstract
Address
Corporate Author Thesis
Publisher ThinkMind Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-61208-226-4 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ infocomp2012 Serial 100
Permanent link to this record