
Giuseppe Della Penna, Benedetto Intrigila, Enrico Tronci, and Marisa Venturini Zilli. "Synchronized regular expressions." Acta Inf. 39, no. 1 (2003): 31–70.
Abstract: Text manipulation is one of the most common tasks for everyone using a computer. The increasing number of textual information in electronic format that every computer user collects everyday also increases the need of more powerful tools to interact with texts. Indeed, much work has been done to provide simple and versatile tools that can be useful for the most common text manipulation tasks. Regular Expressions (RE), introduced by Kleene, are well known in the formal language theory. RE have been extended in various ways, depending on the application of interest. In almost all the implementations of RE search algorithms (e.g. the egrep [15] UNIX command, or the Perl [20] language pattern matching constructs) we find backreferences, i.e. expressions that make reference to the string matched by a previous subexpression. Generally speaking, it seems that all kinds of synchronizations between subexpressions in a RE can be very useful when interacting with texts. In this paper we introduce the Synchronized Regular Expressions (SRE) as an extension of the Regular Expressions. We use SRE to present a formal study of the already known backreferences extension, and of a new extension proposed by us, which we call the synchronized exponents. Moreover, since we are dealing with formalisms that should have a practical utility and be used in real applications, we have the problem of how to present SRE to the final users. Therefore, in this paper we also propose a userfriendly syntax for SRE to be used in implementations of SREpowered search algorithms.



Giuseppe Della Penna, Benedetto Intrigila, Enrico Tronci, and Marisa Venturini Zilli. "Synchronized Regular Expressions." Electr. Notes Theor. Comput. Sci. 62 (2002): 195–210. Notes: TOSCA 2001, Theory of Concurrency, Higher Order Languages and Types.
Abstract: Text manipulation is one of the most common tasks for everyone using a computer. The increasing number of textual information in electronic format that every computer user collects everyday stresses the need of more powerful tools to interact with texts. Indeed, much work has been done to provide nonprogramming tools that can be useful for the most common text manipulation issues. Regular Expressions (RE), introduced by Kleene, are wellÂ–known in the formal language theory. RE received several extensions, depending on the application of interest. In almost all the implementations of RE search algorithms (e.g. the egrep [A] UNIX command, or the Perl [17] language pattern matching constructs) we find backreferences (as defind in [1]), i.e. expressions that make reference to the string matched by a previous subexpression. Generally speaking, it seems that all the kinds of synchronizations between subexpressions in a RE can be very useful when interacting with texts. Therefore, we introduce the Synchronized Regular Expressions (SRE) as a derivation of the Regular Expressions. We use SRE to present a formal study of the already known backreferences extension, and of a new extension proposed by us, which we call the synchronized exponents. Moreover, since we are talking about formalisms that should have a practical utility and can be used in the real world, we have the problem of how to present SRE to the final users. Therefore, in this paper we also propose a userÂ–friendly syntax for SRE to be used in implementations of SREÂ–powered search algorithms.



Federico Cavaliere, Federico Mari, Igor Melatti, Giovanni Minei, Ivano Salvo, Enrico Tronci, Giovanni Verzino, and Yuri Yushtein. "Model Checking Satellite Operational Procedures." In DAta Systems In Aerospace (DASIA), Org. EuroSpace, Canadian Space Agency, CNES, ESA, EUMETSAT. San Anton, Malta, EuroSpace., 2011.
Abstract: We present a model checking approach for the automatic verification of satellite operational procedures (OPs). Building a model for a complex system as a satellite is a hard task. We overcome this obstruction by using a suitable simulator (SIMSAT) for the satellite. Our approach aims at improving OP quality assurance by automatic exhaustive exploration of all possible simulation scenarios. Moreover, our solution decreases OP verification costs by using a model checker (CMurphi) to automatically drive the simulator. We model OPs as userexecuted programs observing the simulator telemetries and sending telecommands to the simulator. In order to assess feasibility of our approach we present experimental results on a simple meaningful scenario. Our results show that we can save up to 90% of verification time.



Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. "From Boolean Relations to Control Software." In Proceedings of ICSEA 2011, The Sixth International Conference on Software Engineering Advances, 528–533. ThinkMind, 2011. ISSN: 9781612081656. Notes: Best Paper Award.
Abstract: Many software as well digital hardware automatic synthesis methods define the set of implementations meeting the given system specifications with a boolean relation K. In such a context a fundamental step in the software (hardware) synthesis process is finding effective solutions to the functional equation defined by K. This entails finding a (set of) boolean function(s) F (typically represented using OBDDs, Ordered Binary Decision Diagrams) such that: 1) for all x for which K is satisfiable, K(x, F(x)) = 1 holds; 2) the implementation of F is efficient with respect to given implementation parameters such as code size or execution time. While this problem has been widely studied in digital hardware synthesis, little has been done in a software synthesis context. Unfortunately the approaches developed for hardware synthesis cannot be directly used in a software context. This motivates investigation of effective methods to solve the above problem when F has to be implemented with software. In this paper we present an algorithm that, from an OBDD representation for K, generates a C code implementation for F that has the same size as the OBDD for F and a WCET (Worst Case Execution Time) linear in nr, being n = x the number of input arguments for functions in F and r the number of functions in F.



Silvia Mazzini, Stefano Puri, Federico Mari, Igor Melatti, and Enrico Tronci. "Formal Verification at System Level." In In: DAta Systems In Aerospace (DASIA), Org. EuroSpace, Canadian Space Agency, CNES, ESA, EUMETSAT. Instanbul, Turkey, EuroSpace., 2009.
Abstract: System Level Analysis calls for a language comprehensible to experts with different background and yet precise enough to support meaningful analyses. SysML is emerging as an effective balance between such conflicting goals. In this paper we outline some the results obtained as for SysML based system level functional formal verification by an ESA/ESTEC study, with a collaboration among INTECS and La Sapienza University of Roma. The study focuses on SysML based system level functional requirements techniques.



Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. "Linear Constraints as a Modeling Language for Discrete Time Hybrid Systems." In Proceedings of ICSEA 2012, The Seventh International Conference on Software Engineering Advances, 664–671. ThinkMind, 2012.



Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. "Control Software Visualization." In Proceedings of INFOCOMP 2012, The Second International Conference on Advanced Communications and Computation, 15–20. ThinkMind, 2012. ISSN: 9781612082264.



Vadim Alimguzhin, Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. A MapReduce Parallel Approach to Automatic Synthesis of Control Software. Vol. abs/1210.2276. CoRR, Technical Report, 2012. http://arxiv.org/abs/1210.2276 (accessed February 18, 2018).
Abstract: Many Control Systems are indeed Software Based Control Systems, i.e. control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of control software.
Available algorithms and tools (e.g., QKS) may require weeks or even months of computation to synthesize control software for largesize systems. This motivates search for parallel algorithms for control software synthesis.
In this paper, we present a mapreduce style parallel algorithm for control software synthesis when the controlled system (plant) is modeled as discrete time linear hybrid system. Furthermore we present an MPIbased implementation PQKS of our algorithm. To the best of our knowledge, this is the first parallel approach for control software synthesis.
We experimentally show effectiveness of PQKS on two classical control synthesis problems: the inverted pendulum and the multiinput buck DC/DC converter. Experiments show that PQKS efficiency is above 65%. As an example, PQKS requires about 16 hours to complete the synthesis of control software for the pendulum on a cluster with 60 processors, instead of the 25 days needed by the sequential algorithm in QKS.



Vadim Alimguzhin, Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. On Model Based Synthesis of Embedded Control Software. Vol. abs/1207.4474. CoRR, Technical Report, 2012. http://arxiv.org/abs/1207.4474 (accessed February 18, 2018).
Abstract: Many Embedded Systems are indeed Software Based Control Systems (SBCSs), that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for control software. Given the formal model of a plant as a Discrete Time Linear Hybrid System and the implementation specifications (that is, number of bits in the AnalogtoDigital (AD) conversion) correctbyconstruction control software can be automatically generated from System Level Formal Specifications of the closed loop system (that is, safety and liveness requirements), by computing a suitable finite abstraction of the plant.
With respect to given implementation specifications, the automatically generated code implements a time optimal control strategy (in terms of setup time), has a Worst Case Execution Time linear in the number of AD bits $b$, but unfortunately, its size grows exponentially with respect to $b$. In many embedded systems, there are severe restrictions on the computational resources (such as memory or computational power) available to microcontroller devices.
This paper addresses model based synthesis of control software by trading system level nonfunctional requirements (such us optimal setup time, ripple) with software nonfunctional requirements (its footprint). Our experimental results show the effectiveness of our approach: for the inverted pendulum benchmark, by using a quantization schema with 12 bits, the size of the small controller is less than 6% of the size of the time optimal one.



Vadim Alimguzhin, Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. Automatic Control Software Synthesis for Quantized Discrete Time Hybrid Systems. Vol. abs/1207.4098. CoRR, Technical Report, 2012. http://arxiv.org/abs/1207.4098 (accessed February 18, 2018).
Abstract: Many Embedded Systems are indeed Software Based Control Systems, that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of embedded systems control software. This paper addresses control software synthesis for discrete time nonlinear systems. We present a methodology to overapproximate the dynamics of a discrete time nonlinear hybrid system H by means of a discrete time linear hybrid system L(H), in such a way that controllers for L(H) are guaranteed to be controllers for H. We present experimental results on the inverted pendulum, a challenging and meaningful benchmark in nonlinear Hybrid Systems control.

