toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links (down)
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico pdf  url
openurl 
  Title Linear Constraints and Guarded Predicates as a Modeling Language for Discrete Time Hybrid Systems Type Journal Article
  Year 2013 Publication International Journal on Advances in Software Abbreviated Journal Intern. Journal on Advances in SW  
  Volume vol. 6, nr 1&2 Issue Pages 155-169  
  Keywords Model-based software design; Linear predicates; Hybrid systems  
  Abstract Model based design is particularly appealing in
software based control systems (e.g., embedded
software) design, since in such a case system
level specifications are much easier to define
than the control software behavior itself. In
turn, model based design of embedded systems
requires modeling both continuous subsystems
(typically, the plant) as well as discrete
subsystems (the controller). This is typically
done using hybrid systems. Mixed Integer Linear
Programming (MILP) based abstraction techniques
have been successfully applied to automatically
synthesize correct-by-construction control
software for discrete time linear hybrid systems,
where plant dynamics is modeled as a linear
predicate over state, input, and next state
variables. Unfortunately, MILP solvers require
such linear predicates to be conjunctions of
linear constraints, which is not a natural way of
modeling hybrid systems. In this paper we show
that, under the hypothesis that each variable
ranges over a bounded interval, any linear
predicate built upon conjunction and disjunction
of linear constraints can be automatically
translated into an equivalent conjunctive
predicate. Since variable bounds play a key role
in this translation, our algorithm includes a
procedure to compute all implicit variable bounds
of the given linear predicate. Furthermore, we
show that a particular form of linear predicates,
namely guarded predicates, are a natural and
powerful language to succinctly model discrete
time linear hybrid systems dynamics. Finally, we
experimentally show the feasibility of our
approach on an important and challenging case
study taken from the literature, namely the
multi-input Buck DC-DC Converter. As an example,
the guarded predicate that models (with 57
constraints) a 6-inputs Buck DC-DC Converter is
translated in a conjunctive predicate (with 102
linear constraints) in about 40 minutes.
 
  Address  
  Corporate Author Thesis  
  Publisher IARIA Place of Publication Editor Luigi Lavazza  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-2628 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ melatti @ Serial 115  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: