|   | 
Details
   web
Records
Author Sinisi, S.; Alimguzhin, V.; Mancini, T.; Tronci, E.
Title Reconciling interoperability with efficient Verification and Validation within open source simulation environments Type Journal Article
Year 2021 Publication Simulation Modelling Practice and Theory Abbreviated Journal
Volume Issue Pages 102277
Keywords Simulation, Verification and Validation, Interoperability, FMI/FMU, Model Exchange, Cyber-Physical Systems
Abstract A Cyber-Physical System (CPS) comprises physical as well as software subsystems. Simulation-based approaches are typically used to support design and Verification and Validation (V&V) of CPSs in several domains such as: aerospace, defence, automotive, smart grid and healthcare. Accordingly, many simulation-based tools are available to support CPS design. This, on one side, enables designers to choose the toolchain that best suits their needs, on the other side poses huge interoperability challenges when one needs to simulate CPSs whose subsystems have been designed and modelled using different toolchains. To overcome such an interoperability problem, in 2010 the Functional Mock-up Interface (FMI) has been proposed as an open standard to support both Model Exchange (ME) and Co-Simulation (CS) of simulation models created with different toolchains. FMI has been adopted by several modelling and simulation environments. Models adhering to such a standard are called Functional Mock-up Units (FMUs). Indeed FMUs play an essential role in defining complex CPSs through, e.g., the System Structure and Parametrization (SSP) standard. Simulation-based V&V of CPSs typically requires exploring different simulation scenarios (i.e., exogenous input sequences to the CPS under design). Many such scenarios have a shared prefix. Accordingly, to avoid simulating many times such shared prefixes, the simulator state at the end of a shared prefix is saved and then restored and used as a start state for the simulation of the next scenario. In this context, an important FMI feature is the capability to save and restore the internal FMU state on demand. This is crucial to increase efficiency of simulation-based V&V. Unfortunately, the implementation of this feature is not mandatory and it is available only within some commercial software. As a result, the interoperability enabled by the FMI standard cannot be fully exploited for V&V when using open-source simulation environments. This motivates developing such a feature for open-source CPS simulation environments. Accordingly, in this paper, we focus on JModelica, an open-source modelling and simulation environment for CPSs based on an open standard modelling language, namely Modelica. We describe how we have endowed JModelica with our open-source implementation of the FMI 2.0 functions needed to save and restore internal states of FMUs for ME. Furthermore, we present experimental results evaluating, through 934 benchmark models, correctness and efficiency of our extended JModelica. Our experimental results show that simulation-based V&V is, on average, 22 times faster with our get/set functionality than without it.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1569-190x ISBN Medium
Area Expedition Conference
Notes Approved (up) no
Call Number MCLab @ davi @ Sinisi2021102277 Serial 186
Permanent link to this record
 

 
Author Sinisi, S.; Alimguzhin, V.; Mancini, T.; Tronci, E.; Mari, F.; Leeners, B.
Title Optimal Personalised Treatment Computation through In Silico Clinical Trials on Patient Digital Twins Type Journal Article
Year 2020 Publication Abbreviated Journal Fundamenta Informaticae
Volume 174 Issue Pages 283-310
Keywords Artificial Intelligence; Virtual Physiological Human; In Silico Clinical Trials; Simulation; Personalised Medicine; In Silico Treatment Optimisation
Abstract In Silico Clinical Trials (ISCT), i.e. clinical experimental campaigns carried out by means of computer simulations, hold the promise to decrease time and cost for the safety and efficacy assessment of pharmacological treatments, reduce the need for animal and human testing, and enable precision medicine. In this paper we present methods and an algorithm that, by means of extensive computer simulation-based experimental campaigns (ISCT) guided by intelligent search, optimise a pharmacological treatment for an individual patient (precision medicine ). We show the effectiveness of our approach on a case study involving a real pharmacological treatment, namely the downregulation phase of a complex clinical protocol for assisted reproduction in humans.
Address
Corporate Author Thesis
Publisher IOS Press Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1875-8681 ISBN Medium
Area Expedition Conference
Notes Approved (up) no
Call Number MCLab @ davi @ Serial 187
Permanent link to this record
 

 
Author Chen, Q.M.; Finzi, A.; Mancini, T.; Melatti, I.; Tronci, E.
Title MILP, Pseudo-Boolean, and OMT Solvers for Optimal Fault-Tolerant Placements of Relay Nodes in Mission Critical Wireless Networks Type Journal Article
Year 2020 Publication Abbreviated Journal Fundamenta Informaticae
Volume 174 Issue Pages 229-258
Keywords
Abstract In critical infrastructures like airports, much care has to be devoted in protecting radio communication networks from external electromagnetic interference. Protection of such mission-critical radio communication networks is usually tackled by exploiting radiogoniometers: at least three suitably deployed radiogoniometers, and a gateway gathering information from them, permit to monitor and localise sources of electromagnetic emissions that are not supposed to be present in the monitored area. Typically, radiogoniometers are connected to the gateway through relay nodes . As a result, some degree of fault-tolerance for the network of relay nodes is essential in order to offer a reliable monitoring. On the other hand, deployment of relay nodes is typically quite expensive. As a result, we have two conflicting requirements: minimise costs while guaranteeing a given fault-tolerance. In this paper, we address the problem of computing a deployment for relay nodes that minimises the overall cost while at the same time guaranteeing proper working of the network even when some of the relay nodes (up to a given maximum number) become faulty (fault-tolerance ). We show that, by means of a computation-intensive pre-processing on a HPC infrastructure, the above optimisation problem can be encoded as a 0/1 Linear Program, becoming suitable to be approached with standard Artificial Intelligence reasoners like MILP, PB-SAT, and SMT/OMT solvers. Our problem formulation enables us to present experimental results comparing the performance of these three solving technologies on a real case study of a relay node network deployment in areas of the Leonardo da Vinci Airport in Rome, Italy.
Address
Corporate Author Thesis
Publisher IOS Press Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1875-8681 ISBN Medium
Area Expedition Conference
Notes Approved (up) no
Call Number MCLab @ davi @ Serial 188
Permanent link to this record
 

 
Author Fischer, S.; Ehrig, R.; Schaefer, S.; Tronci, E.; Mancini, T.; Egli, M.; Ille, F.; Krueger, T.H.C.; Leeners, B.; Roeblitz, S.
Title Mathematical Modeling and Simulation Provides Evidence for New Strategies of Ovarian Stimulation Type Journal Article
Year 2021 Publication Frontiers in Endocrinology Abbreviated Journal
Volume 12 Issue Pages 117
Keywords
Abstract New approaches to ovarian stimulation protocols, such as luteal start, random start or double stimulation, allow for flexibility in ovarian stimulation at different phases of the menstrual cycle. It has been proposed that the success of these methods is based on the continuous growth of multiple cohorts (“waves”) of follicles throughout the menstrual cycle which leads to the availability of ovarian follicles for ovarian controlled stimulation at several time points. Though several preliminary studies have been published, their scientific evidence has not been considered as being strong enough to integrate these results into routine clinical practice. This work aims at adding further scientific evidence about the efficiency of variable-start protocols and underpinning the theory of follicular waves by using mathematical modeling and numerical simulations. For this purpose, we have modified and coupled two previously published models, one describing the time course of hormones and one describing competitive follicular growth in a normal menstrual cycle. The coupled model is used to test ovarian stimulation protocols in silico. Simulation results show the occurrence of follicles in a wave-like manner during a normal menstrual cycle and qualitatively predict the outcome of ovarian stimulation initiated at different time points of the menstrual cycle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-2392 ISBN Medium
Area Expedition Conference
Notes Approved (up) no
Call Number MCLab @ davi @ ref10.3389/fendo.2021.613048 Serial 189
Permanent link to this record
 

 
Author Melatti, I.; Mari, F.; Mancini, T.; Prodanovic, M.; Tronci, E.
Title A Two-Layer Near-Optimal Strategy for Substation Constraint Management via Home Batteries Type Journal Article
Year 2021 Publication IEEE Transactions on Industrial Electronics Abbreviated Journal
Volume Issue Pages 1-1
Keywords
Abstract Within electrical distribution networks, substation constraints management requires that aggregated power demand from residential users is kept within suitable bounds. Efficiency of substation constraints management can be measured as the reduction of constraints violations w.r.t. unmanaged demand. Home batteries hold the promise of enabling efficient and user-oblivious substation constraints management. Centralized control of home batteries would achieve optimal efficiency. However, it is hardly acceptable by users, since service providers (e.g., utilities or aggregators) would directly control batteries at user premises. Unfortunately, devising efficient hierarchical control strategies, thus overcoming the above problem, is far from easy. We present a novel two-layer control strategy for home batteries that avoids direct control of home devices by the service provider and at the same time yields near-optimal substation constraints management efficiency. Our simulation results on field data from 62 households in Denmark show that the substation constraints management efficiency achieved with our approach is at least 82% of the one obtained with a theoretical optimal centralized strategy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes To appear Approved (up) no
Call Number MCLab @ davi @ ref9513535 Serial 190
Permanent link to this record
 

 
Author Mancini, T.; Melatti, I.; Tronci, E.
Title Any-horizon uniform random sampling and enumeration of constrained scenarios for simulation-based formal verification Type Journal Article
Year 2021 Publication IEEE Transactions on Software Engineering Abbreviated Journal
Volume Issue Pages 1-1
Keywords
Abstract Model-based approaches to the verification of non-terminating Cyber-Physical Systems (CPSs) usually rely on numerical simulation of the System Under Verification (SUV) model under input scenarios of possibly varying duration, chosen among those satisfying given constraints. Such constraints typically stem from requirements (or assumptions) on the SUV inputs and its operational environment as well as from the enforcement of additional conditions aiming at, e.g., prioritising the (often extremely long) verification activity, by, e.g., focusing on scenarios explicitly exercising selected requirements, or avoiding </i>vacuity</i> in their satisfaction. In this setting, the possibility to efficiently sample at random (with a known distribution, e.g., uniformly) within, or to efficiently enumerate (possibly in a uniformly random order) scenarios among those satisfying all the given constraints is a key enabler for the practical viability of the verification process, e.g., via simulation-based statistical model checking. Unfortunately, in case of non-trivial combinations of constraints, iterative approaches like Markovian random walks in the space of sequences of inputs in general fail in extracting scenarios according to a given distribution (e.g., uniformly), and can be very inefficient to produce at all scenarios that are both legal (with respect to SUV assumptions) and of interest (with respect to the additional constraints). For example, in our case studies, up to 91% of the scenarios generated using such iterative approaches would need to be neglected. In this article, we show how, given a set of constraints on the input scenarios succinctly defined by multiple finite memory monitors, a data structure (scenario generator) can be synthesised, from which any-horizon scenarios satisfying the input constraints can be efficiently extracted by (possibly uniform) random sampling or (randomised) enumeration. Our approach enables seamless support to virtually all simulation-based approaches to CPS verification, ranging from simple random testing to statistical model checking and formal (i.e., exhaustive) verification, when a suitable bound on the horizon or an iterative horizon enlargement strategy is defined, as in the spirit of bounded model checking.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1939-3520 ISBN Medium
Area Expedition Conference
Notes To appear Approved (up) no
Call Number MCLab @ davi @ ref9527998 Serial 191
Permanent link to this record
 

 
Author Tronci, Enrico
Title Introductory Paper Type Journal Article
Year 2006 Publication Sttt Abbreviated Journal
Volume 8 Issue 4-5 Pages 355-358
Keywords
Abstract In today’s competitive market designing of digital systems (hardware as well as software) faces tremendous challenges. In fact, notwithstanding an ever decreasing project budget, time to market and product lifetime, designers are faced with an ever increasing system complexity and customer expected quality. The above situation calls for better and better formal verification techniques at all steps of the design flow. This special issue is devoted to publishing revised versions of contributions first presented at the 12th Advanced Research Working Conference on Correct Hardware Design and Verification Methods (CHARME) held 21–24 October 2003 in L’Aquila, Italy. Authors of well regarded papers from CHARME’03 were invited to submit to this special issue. All papers included here have been suitably extended and have undergone an independent round of reviewing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved (up) yes
Call Number Sapienza @ mari @ sttt06 Serial 30
Permanent link to this record
 

 
Author Della Penna, Giuseppe; Magazzeni, Daniele; Tofani, Alberto; Intrigila, Benedetto; Melatti, Igor; Tronci, Enrico
Title Automated Generation Of Optimal Controllers Through Model Checking Techniques Type Book Chapter
Year 2008 Publication Informatics in Control Automation and Robotics. Selected Papers from ICINCO 2006 Abbreviated Journal
Volume Issue Pages 107-119
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved (up) yes
Call Number Sapienza @ mari @ Dmtmt08 Serial 26
Permanent link to this record
 

 
Author Della Penna, Giuseppe; Tofani, Alberto; Pecorari, Marcello; Raparelli, Orazio; Intrigila, Benedetto; Melatti, Igor; Tronci, Enrico
Title A Case Study on Automated Generation of Integration Tests Type Conference Article
Year 2006 Publication Fdl Abbreviated Journal
Volume Issue Pages 278-284
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Ecsi Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-3-00-019710-9 ISBN Medium
Area Expedition Conference
Notes Approved (up) yes
Call Number Sapienza @ mari @ Dtprimt06 Serial 27
Permanent link to this record
 

 
Author Bartolini, Novella; Tronci, Enrico
Title On Optimizing Service Availability of an Internet Based Architecture for Infrastructure Protection Type Conference Article
Year 2006 Publication Cnip Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved (up) yes
Call Number Sapienza @ mari @ Bt06 Serial 28
Permanent link to this record