|   | 
Details
   web
Records
Author (up) Della Penna, Giuseppe; Intrigila, Benedetto; Magazzeni, Daniele; Melatti, Igor; Tronci, Enrico
Title CGMurphi: Automatic synthesis of numerical controllers for nonlinear hybrid systems Type Journal Article
Year 2013 Publication European Journal of Control Abbreviated Journal European Journal of Control
Volume 19 Issue 1 Pages 14-36
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Elsevier North-Holland, Inc. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-3580 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Sapienza @ melatti @ Serial 114
Permanent link to this record
 

 
Author (up) Della Penna, Giuseppe; Intrigila, Benedetto; Melatti, Igor; Minichino, Michele; Ciancamerla, Ester; Parisse, Andrea; Tronci, Enrico; Venturini Zilli, Marisa
Title Automatic Verification of a Turbogas Control System with the Mur$\varphi$ Verifier Type Conference Article
Year 2003 Publication Hybrid Systems: Computation and Control, 6th International Workshop, HSCC 2003 Prague, Czech Republic, April 3-5, 2003, Proceedings Abbreviated Journal
Volume Issue Pages 141-155
Keywords
Abstract Automatic analysis of Hybrid Systems poses formidable challenges both from a modeling as well as from a verification point of view. We present a case study on automatic verification of a Turbogas Control System (TCS) using an extended version of the Mur$\varphi$ verifier. TCS is the heart of ICARO, a 2MW Co-generative Electric Power Plant. For large hybrid systems, as TCS is, the modeling effort accounts for a significant part of the whole verification activity. In order to ease our modeling effort we extended the Mur$\varphi$ verifier by importing the C language long double type (finite precision real numbers) into it. We give experimental results on running our extended Mur$\varphi$ on our TCS model. For example using Mur$\varphi$ we were able to compute an admissible range of values for the variation speed of the user demand of electric power to the turbogas.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor Maler, O.; Pnueli, A.
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 2623 Series Issue Edition
ISSN 3-540-00913-2 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Dimmcptz03 Serial 88
Permanent link to this record
 

 
Author (up) Della Penna, Giuseppe; Intrigila, Benedetto; Melatti, Igor; Tronci, Enrico
Title Exploiting Hub States in Automatic Verification Type Conference Article
Year 2005 Publication Automated Technology for Verification and Analysis: Third International Symposium, ATVA 2005, Taipei, Taiwan, October 4-7, 2005, Proceedings Abbreviated Journal
Volume Issue Pages 54-68
Keywords
Abstract In this paper we present a new algorithm to counteract state explosion when using Explicit State Space Exploration to verify protocol-like systems. We sketch the implementation of our algorithm within the Caching Mur$\varphi$ verifier and give experimental results showing its effectiveness. We show experimentally that, when memory is a scarce resource, our algorithm improves on the time performances of Caching Mur$\varphi$ verification algorithm, saving between 16% and 68% (45% on average) in computation time.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor D.A. Peled; Y.-K. Tsay
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 3707 Series Issue Edition
ISSN 3-540-29209-8 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Dimt04 Serial 83
Permanent link to this record
 

 
Author (up) Della Penna, Giuseppe; Intrigila, Benedetto; Melatti, Igor; Tronci, Enrico; Venturini Zilli, Marisa
Title Finite horizon analysis of Markov Chains with the Mur$\varphi$ verifier Type Journal Article
Year 2006 Publication Int. J. Softw. Tools Technol. Transf. Abbreviated Journal
Volume 8 Issue 4 Pages 397-409
Keywords
Abstract In this paper we present an explicit disk-based verification algorithm for Probabilistic Systems defining discrete time/finite state Markov Chains. Given a Markov Chain and an integer k (horizon), our algorithm checks whether the probability of reaching an error state in at most k steps is below a given threshold. We present an implementation of our algorithm within a suitable extension of the Mur$\varphi$ verifier. We call the resulting probabilistic model checker FHP-Mur$\varphi$ (Finite Horizon Probabilistic Mur$\varphi$). We present experimental results comparing FHP-Mur$\varphi$ with (a finite horizon subset of) PRISM, a state-of-the-art symbolic model checker for Markov Chains. Our experimental results show that FHP-Mur$\varphi$ can handle systems that are out of reach for PRISM, namely those involving arithmetic operations on the state variables (e.g. hybrid systems).
Address
Corporate Author Thesis
Publisher Springer-Verlag Place of Publication Berlin, Heidelberg Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-2779 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Dimtz06 Serial 78
Permanent link to this record
 

 
Author (up) Della Penna, Giuseppe; Intrigila, Benedetto; Melatti, Igor; Tronci, Enrico; Venturini Zilli, Marisa
Title Bounded Probabilistic Model Checking with the Mur$\varphi$ Verifier Type Conference Article
Year 2004 Publication Formal Methods in Computer-Aided Design, 5th International Conference, FMCAD 2004, Austin, Texas, USA, November 15-17, 2004, Proceedings Abbreviated Journal
Volume Issue Pages 214-229
Keywords
Abstract In this paper we present an explicit verification algorithm for Probabilistic Systems defining discrete time/finite state Markov Chains. We restrict ourselves to verification of Bounded PCTL formulas (BPCTL), that is, PCTL formulas in which all Until operators are bounded, possibly with different bounds. This means that we consider only paths (system runs) of bounded length. Given a Markov Chain $\cal M$ and a BPCTL formula Φ, our algorithm checks if Φ is satisfied in $\cal M$. This allows to verify important properties, such as reliability in Discrete Time Hybrid Systems. We present an implementation of our algorithm within a suitable extension of the Mur$\varphi$ verifier. We call FHP-Mur$\varphi$ (Finite Horizon Probabilistic Mur$\varphi$) such extension of the Mur$\varphi$ verifier. We give experimental results comparing FHP-Mur$\varphi$ with (a finite horizon subset of) PRISM, a state-of-the-art symbolic model checker for Markov Chains. Our experimental results show that FHP-Mur$\varphi$ can effectively handle verification of BPCTL formulas for systems that are out of reach for PRISM, namely those involving arithmetic operations on the state variables (e.g. hybrid systems).
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor Hu, A.J.; Martin, A.K.
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 3312 Series Issue Edition
ISSN 3-540-23738-0 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Dimtz04 Serial 87
Permanent link to this record
 

 
Author (up) Della Penna, Giuseppe; Intrigila, Benedetto; Melatti, Igor; Tronci, Enrico; Venturini Zilli, Marisa
Title Exploiting Transition Locality in Automatic Verification of Finite State Concurrent Systems Type Journal Article
Year 2004 Publication Sttt Abbreviated Journal
Volume 6 Issue 4 Pages 320-341
Keywords
Abstract In this paper we show that statistical properties of the transition graph of a system to be verified can be exploited to improve memory or time performances of verification algorithms. We show experimentally that protocols exhibit transition locality. That is, with respect to levels of a breadth-first state space exploration, state transitions tend to be between states belonging to close levels of the transition graph. We support our claim by measuring transition locality for the set of protocols included in the Mur$\varphi$ verifier distribution. We present a cache-based verification algorithm that exploits transition locality to decrease memory usage and a disk-based verification algorithm that exploits transition locality to decrease disk read accesses, thus reducing the time overhead due to disk usage. Both algorithms have been implemented within the Mur$\varphi$ verifier. Our experimental results show that our cache-based algorithm can typically save more than 40% of memory with an average time penalty of about 50% when using (Mur$\varphi$) bit compression and 100% when using bit compression and hash compaction, whereas our disk-based verification algorithm is typically more than ten times faster than a previously proposed disk-based verification algorithm and, even when using 10% of the memory needed to complete verification, it is only between 40 and 530% (300% on average) slower than (RAM) Mur$\varphi$ with enough memory to complete the verification task at hand. Using just 300 MB of memory our disk-based Mur$\varphi$ was able to complete verification of a protocol with about $10^9$ reachable states. This would require more than 5 GB of memory using standard Mur$\varphi$.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ DIMTZ04j Serial 91
Permanent link to this record
 

 
Author (up) Della Penna, Giuseppe; Intrigila, Benedetto; Melatti, Igor; Tronci, Enrico; Venturini Zilli, Marisa
Title Finite Horizon Analysis of Markov Chains with the Mur$\varphi$ Verifier Type Conference Article
Year 2003 Publication Correct Hardware Design and Verification Methods, 12th IFIP WG 10.5 Advanced Research Working Conference, CHARME 2003, L'Aquila, Italy, October 21-24, 2003, Proceedings Abbreviated Journal
Volume Issue Pages 394-409
Keywords
Abstract In this paper we present an explicit disk based verification algorithm for Probabilistic Systems defining discrete time/finite state Markov Chains. Given a Markov Chain and an integer k (horizon), our algorithm checks whether the probability of reaching an error state in at most k steps is below a given threshold. We present an implementation of our algorithm within a suitable extension of the Mur$\varphi$ verifier. We call the resulting probabilistic model checker FHP-Mur$\varphi$ (Finite Horizon Probabilistic Mur$\varphi$). We present experimental results comparing FHP-Mur$\varphi$ with (a finite horizon subset of) PRISM, a state-of-the-art symbolic model checker for Markov Chains. Our experimental results show that FHP-Mur$\varphi$ can handle systems that are out of reach for PRISM, namely those involving arithmetic operations on the state variables (e.g. hybrid systems).
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor Geist, D.; Tronci, E.
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 2860 Series Issue Edition
ISSN 3-540-20363-X ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Dimtz03 Serial 84
Permanent link to this record
 

 
Author (up) Della Penna, Giuseppe; Intrigila, Benedetto; Melatti, Igor; Tronci, Enrico; Venturini Zilli, Marisa
Title Integrating RAM and Disk Based Verification within the Mur$\varphi$ Verifier Type Conference Article
Year 2003 Publication Correct Hardware Design and Verification Methods, 12th IFIP WG 10.5 Advanced Research Working Conference, CHARME 2003, L'Aquila, Italy, October 21-24, 2003, Proceedings Abbreviated Journal
Volume Issue Pages 277-282
Keywords
Abstract We present a verification algorithm that can automatically switch from RAM based verification to disk based verification without discarding the work done during the RAM based verification phase. This avoids having to choose beforehand the proper verification algorithm. Our experimental results show that typically our integrated algorithm is as fast as (sometime faster than) the fastest of the two base (i.e. RAM based and disk based) verification algorithms.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor Geist, D.; Tronci, E.
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 2860 Series Issue Edition
ISSN 3-540-20363-X ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ DIMTZ03a Serial 85
Permanent link to this record
 

 
Author (up) Della Penna, Giuseppe; Intrigila, Benedetto; Melatti, Igor; Tronci, Enrico; Venturini Zilli, Marisa
Title Finite Horizon Analysis of Stochastic Systems with the Mur$\varphi$ Verifier Type Conference Article
Year 2003 Publication Theoretical Computer Science, 8th Italian Conference, ICTCS 2003, Bertinoro, Italy, October 13-15, 2003, Proceedings Abbreviated Journal
Volume Issue Pages 58-71
Keywords
Abstract Many reactive systems are actually Stochastic Processes. Automatic analysis of such systems is usually very difficult thus typically one simplifies the analysis task by using simulation or by working on a simplified model (e.g. a Markov Chain). We present a Finite Horizon Probabilistic Model Checking approach which essentially can handle the same class of stochastic processes of a typical simulator. This yields easy modeling of the system to be analyzed together with formal verification capabilities. Our approach is based on a suitable disk based extension of the Mur$\varphi$ verifier. Moreover we present experimental results showing effectiveness of our approach.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor Blundo, C.; Laneve, C.
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 2841 Series Issue Edition
ISSN 3-540-20216-1 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ DIMTZ03c Serial 90
Permanent link to this record
 

 
Author (up) Della Penna, Giuseppe; Intrigila, Benedetto; Tronci, Enrico; Venturini Zilli, Marisa
Title Synchronized regular expressions Type Journal Article
Year 2003 Publication Acta Inf. Abbreviated Journal
Volume 39 Issue 1 Pages 31-70
Keywords
Abstract Text manipulation is one of the most common tasks for everyone using a computer. The increasing number of textual information in electronic format that every computer user collects everyday also increases the need of more powerful tools to interact with texts. Indeed, much work has been done to provide simple and versatile tools that can be useful for the most common text manipulation tasks. Regular Expressions (RE), introduced by Kleene, are well known in the formal language theory. RE have been extended in various ways, depending on the application of interest. In almost all the implementations of RE search algorithms (e.g. the egrep [15] UNIX command, or the Perl [20] language pattern matching constructs) we find backreferences, i.e. expressions that make reference to the string matched by a previous subexpression. Generally speaking, it seems that all kinds of synchronizations between subexpressions in a RE can be very useful when interacting with texts. In this paper we introduce the Synchronized Regular Expressions (SRE) as an extension of the Regular Expressions. We use SRE to present a formal study of the already known backreferences extension, and of a new extension proposed by us, which we call the synchronized exponents. Moreover, since we are dealing with formalisms that should have a practical utility and be used in real applications, we have the problem of how to present SRE to the final users. Therefore, in this paper we also propose a user-friendly syntax for SRE to be used in implementations of SRE-powered search algorithms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ actainf03 Serial 39
Permanent link to this record