toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico pdf  openurl
  Title Linear Constraints as a Modeling Language for Discrete Time Hybrid Systems Type Conference Article
  Year 2012 Publication Proceedings of ICSEA 2012, The Seventh International Conference on Software Engineering Advances Abbreviated Journal  
  Volume Issue Pages 664-671  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher ThinkMind Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ icsea12 Serial 98  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico pdf  openurl
  Title Control Software Visualization Type Conference Article
  Year 2012 Publication Proceedings of INFOCOMP 2012, The Second International Conference on Advanced Communications and Computation Abbreviated Journal  
  Volume Issue Pages 15-20  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher ThinkMind Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-61208-226-4 ISBN (down) Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ infocomp2012 Serial 100  
Permanent link to this record
 

 
Author Alimguzhin, Vadim; Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico file  url
openurl 
  Title A Map-Reduce Parallel Approach to Automatic Synthesis of Control Software Type Report
  Year 2012 Publication Abbreviated Journal  
  Volume abs/1210.2276 Issue Pages  
  Keywords  
  Abstract Many Control Systems are indeed Software Based Control Systems, i.e. control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of control software.
Available algorithms and tools (e.g., QKS) may require weeks or even months of computation to synthesize control software for large-size systems. This motivates search for parallel algorithms for control software synthesis.
In this paper, we present a map-reduce style parallel algorithm for control software synthesis when the controlled system (plant) is modeled as discrete time linear hybrid system. Furthermore we present an MPI-based implementation PQKS of our algorithm. To the best of our knowledge, this is the first parallel approach for control software synthesis.
We experimentally show effectiveness of PQKS on two classical control synthesis problems: the inverted pendulum and the multi-input buck DC/DC converter. Experiments show that PQKS efficiency is above 65%. As an example, PQKS requires about 16 hours to complete the synthesis of control software for the pendulum on a cluster with 60 processors, instead of the 25 days needed by the sequential algorithm in QKS.
 
  Address  
  Corporate Author Thesis  
  Publisher CoRR, Technical Report Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Serial 101  
Permanent link to this record
 

 
Author Alimguzhin, Vadim; Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico url  openurl
  Title On Model Based Synthesis of Embedded Control Software Type Report
  Year 2012 Publication Abbreviated Journal  
  Volume abs/1207.4474 Issue Pages  
  Keywords  
  Abstract Many Embedded Systems are indeed Software Based Control Systems (SBCSs), that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for control software. Given the formal model of a plant as a Discrete Time Linear Hybrid System and the implementation specifications (that is, number of bits in the Analog-to-Digital (AD) conversion) correct-by-construction control software can be automatically generated from System Level Formal Specifications of the closed loop system (that is, safety and liveness requirements), by computing a suitable finite abstraction of the plant.
With respect to given implementation specifications, the automatically generated code implements a time optimal control strategy (in terms of set-up time), has a Worst Case Execution Time linear in the number of AD bits $b$, but unfortunately, its size grows exponentially with respect to $b$. In many embedded systems, there are severe restrictions on the computational resources (such as memory or computational power) available to microcontroller devices.
This paper addresses model based synthesis of control software by trading system level non-functional requirements (such us optimal set-up time, ripple) with software non-functional requirements (its footprint). Our experimental results show the effectiveness of our approach: for the inverted pendulum benchmark, by using a quantization schema with 12 bits, the size of the small controller is less than 6% of the size of the time optimal one.
 
  Address  
  Corporate Author Thesis  
  Publisher CoRR, Technical Report Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Serial 102  
Permanent link to this record
 

 
Author Alimguzhin, Vadim; Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico url  openurl
  Title Automatic Control Software Synthesis for Quantized Discrete Time Hybrid Systems Type Report
  Year 2012 Publication Abbreviated Journal  
  Volume abs/1207.4098 Issue Pages  
  Keywords  
  Abstract Many Embedded Systems are indeed Software Based Control Systems, that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of embedded systems control software. This paper addresses control software synthesis for discrete time nonlinear systems. We present a methodology to overapproximate the dynamics of a discrete time nonlinear hybrid system H by means of a discrete time linear hybrid system L(H), in such a way that controllers for L(H) are guaranteed to be controllers for H. We present experimental results on the inverted pendulum, a challenging and meaningful benchmark in nonlinear Hybrid Systems control.  
  Address  
  Corporate Author Thesis  
  Publisher CoRR, Technical Report Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Serial 103  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico url  openurl
  Title Model Based Synthesis of Control Software from System Level Formal Specifications Type Report
  Year 2013 Publication Abbreviated Journal  
  Volume abs/1107.5638 Issue Pages  
  Keywords  
  Abstract Many Embedded Systems are indeed Software Based Control Systems, that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of embedded systems control software.
We present an algorithm, along with a tool QKS implementing it, that from a formal model (as a Discrete Time Linear Hybrid System) of the controlled system (plant), implementation specifications (that is, number of bits in the Analog-to-Digital, AD, conversion) and System Level Formal Specifications (that is, safety and liveness requirements for the closed loop system) returns correct-by-construction control software that has a Worst Case Execution Time (WCET) linear in the number of AD bits and meets the given specifications.
We show feasibility of our approach by presenting experimental results on using it to synthesize control software for a buck DC-DC converter, a widely used mixed-mode analog circuit, and for the inverted pendulum.
 
  Address  
  Corporate Author Thesis  
  Publisher CoRR, Technical Report Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Serial 104  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico url  openurl
  Title From Boolean Functional Equations to Control Software Type Report
  Year 2011 Publication Abbreviated Journal  
  Volume abs/1106.0468 Issue Pages  
  Keywords  
  Abstract Many software as well digital hardware automatic synthesis methods define the set of implementations meeting the given system specifications with a boolean relation K. In such a context a fundamental step in the software (hardware) synthesis process is finding effective solutions to the functional equation defined by K. This entails finding a (set of) boolean function(s) F (typically represented using OBDDs, Ordered Binary Decision Diagrams) such that: 1) for all x for which K is satisfiable, K(x, F(x)) = 1 holds; 2) the implementation of F is efficient with respect to given implementation parameters such as code size or execution time. While this problem has been widely studied in digital hardware synthesis, little has been done in a software synthesis context. Unfortunately the approaches developed for hardware synthesis cannot be directly used in a software context. This motivates investigation of effective methods to solve the above problem when F has to be implemented with software. In this paper we present an algorithm that, from an OBDD representation for K, generates a C code implementation for F that has the same size as the OBDD for F and a WCET (Worst Case Execution Time) at most O(nr), being n = |x| the number of arguments of functions in F and r the number of functions in F.  
  Address  
  Corporate Author Thesis  
  Publisher CoRR, Technical Report Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Serial 105  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico url  openurl
  Title Quantized Feedback Control Software Synthesis from System Level Formal Specifications for Buck DC/DC Converters Type Report
  Year 2011 Publication Abbreviated Journal  
  Volume abs/1105.5640 Issue Pages  
  Keywords  
  Abstract Many Embedded Systems are indeed Software Based Control Systems (SBCSs), that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of SBCS control software. In previous works we presented an algorithm, along with a tool QKS implementing it, that from a formal model (as a Discrete Time Linear Hybrid System, DTLHS) of the controlled system (plant), implementation specifications (that is, number of bits in the Analog-to-Digital, AD, conversion) and System Level Formal Specifications (that is, safety and liveness requirements for the closed loop system) returns correct-by-construction control software that has a Worst Case Execution Time (WCET) linear in the number of AD bits and meets the given specifications. In this technical report we present full experimental results on using it to synthesize control software for two versions of buck DC-DC converters (single-input and multi-input), a widely used mixed-mode analog circuit.  
  Address  
  Corporate Author Thesis  
  Publisher CoRR, Technical Report Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Serial 106  
Permanent link to this record
 

 
Author Kuijpers, Ed; Carotenuto, Luigi; Malapert, Jean-Cristophe; Markov-Vetter, Daniela; Melatti, Igor; Orlandini, Andrea; Pinchuk, Ranni pdf  openurl
  Title Collaboration on ISS Experiment Data and Knowledge Representation Type Conference Article
  Year 2012 Publication Proc. of IAC 2012 Abbreviated Journal  
  Volume D.5.11 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ melatti @ Serial 107  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico pdf  url
openurl 
  Title Synthesizing Control Software from Boolean Relations Type Journal Article
  Year 2012 Publication International Journal on Advances in Software Abbreviated Journal Intern. Journal on Advances in SW  
  Volume vol. 5, nr 3&4 Issue Pages 212-223  
  Keywords Control Software Synthesis; Embedded Systems; Model Checking  
  Abstract Many software as well digital hardware automatic
synthesis methods define the set of
implementations meeting the given system
specifications with a boolean relation K. In
such a context a fundamental step in the software
(hardware) synthesis process is finding effective
solutions to the functional equation defined by
K. This entails finding a (set of) boolean
function(s) F (typically represented using
OBDDs, Ordered Binary Decision Diagrams)
such that: 1) for all x for which K is
satisfiable, K(x, F(x)) = 1 holds; 2) the
implementation of F is efficient with respect
to given implementation parameters such as code
size or execution time. While this problem has
been widely studied in digital hardware synthesis,
little has been done in a software synthesis
context. Unfortunately, the approaches developed
for hardware synthesis cannot be directly used in
a software context. This motivates investigation
of effective methods to solve the above problem
when F has to be implemented with software. In
this paper, we present an algorithm that, from an
OBDD representation for K, generates a C code
implementation for F that has the same size as
the OBDD for F and a worst case execution time
linear in nr, being n = |x| the number of
input arguments for functions in F and r the
number of functions in F. Moreover, a formal
proof of the proposed algorithm correctness is
also shown. Finally, we present experimental
results showing effectiveness of the proposed
algorithm.
 
  Address  
  Corporate Author Thesis  
  Publisher IARIA Place of Publication Editor Luigi Lavazza  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-2628 ISBN (down) Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ melatti @ Serial 108  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: