toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Leeners, B.; Krueger, T.H.C.; Geraedts, K.; Tronci, E.; Mancini, T.; Egli, M.; Roeblitz, S.; Saleh, L.; Spanaus, K.; Schippert, C.; Zhang, Y.; Ille, F. pdf  url
doi  openurl
  Title Associations Between Natural Physiological and Supraphysiological Estradiol Levels and Stress Perception Type Journal Article
  Year 2019 Publication Frontiers in Psychology Abbreviated Journal  
  Volume 10 Issue Pages 1296  
  Keywords  
  Abstract Stress is a risk factor for impaired general, mental and reproductive health. The role of physiological and supraphysiological estradiol concentrations in stress perception and stress processing is less well understood. We therefore, conducted a prospective observational study to investigate the association between estradiol, stress perception and stress-related cognitive performance within serial measurements either during the natural menstrual cycle or during fertility treatment, where estradiol levels are strongly above the physiological level of a natural cycle and consequently, represent a good model to study dose-dependent effects of estradiol. Data from 44 women receiving in vitro fertilization at the Department of Reproductive Endocrinology in Zurich, Switzerland was compared to data from 88 women with measurements during their natural menstrual cycle. The german version of the Perceived Stress Questionnaire (PSQ) and the Cognitive Bias Test (CBT), in which cognitive performance is tested under time stress were used to evaluate subjective and functional aspects of stress. Estradiol levels were investigated at four different time points during the menstrual cycle and at two different time points during a fertility treatment. Cycle phase were associated with PSQ worry and cognitive bias in normally cycling women, but different phases of fertility treatment were not associated with subjectively perceived stress and stress-related cognitive bias. PSQ lack of joy and PSQ demands related to CBT in women receiving fertility treatment but not in women with a normal menstrual cycle. Only strong changes of the estradiol level during fertility treatment were weakly associated with CBT, but not with subjectively experienced stress. Our research emphasises the multidimensional character of stress and the necessity to adjust stress research to the complex nature of stress perception and processing. Infertility is associated with an increased psychological burden in patients. However, not all phases of the process to overcome infertility do significantly increase patient stress levels. Also, research on the psychological burden of infertility should consider that stress may vary during the different phases of fertility treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (up) Series Issue Edition  
  ISSN 1664-1078 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MCLab @ davi @ ref10.3389/fpsyg.2019.01296 Serial 178  
Permanent link to this record
 

 
Author Driouich, Y.; Parente, M.; Tronci, E. pdf  doi
openurl 
  Title Modeling cyber-physical systems for automatic verification Type Conference Article
  Year 2017 Publication 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD 2017) Abbreviated Journal  
  Volume Issue Pages 1-4  
  Keywords cyber-physical systems;formal verification;maximum power point trackers;power engineering computing;Modelica;automatic verification;complex power electronics systems;cyber-physical systems modeling;distributed maximum power point tracking system;open standard modeling language;Computational modeling;Control systems;Integrated circuit modeling;Mathematical model;Maximum power point trackers;Object oriented modeling;Radiation effects;Automatic Formal Verification;Cyber-Physical Systems;DMPPT;Modeling;Photovoltaic systems;Simulation;System Analysis and Design  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (up) Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MCLab @ davi @ ref7981621 Serial 168  
Permanent link to this record
 

 
Author Driouich, Y.; Parente, M.; Tronci, E. pdf  doi
openurl 
  Title A methodology for a complete simulation of Cyber-Physical Energy Systems Type Conference Article
  Year 2018 Publication EESMS 2018 – Environmental, Energy, and Structural Monitoring Systems, Proceedings Abbreviated Journal  
  Volume Issue Pages 1-5  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (up) Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MCLab @ davi @ Driouich20181 Serial 169  
Permanent link to this record
 

 
Author Mancini, T.; Mari, F.; Melatti, I.; Salvo, I.; Tronci, E.; Gruber, J.; Hayes, B.; Prodanovic, M.; Elmegaard, L. pdf  doi
openurl 
  Title Parallel Statistical Model Checking for Safety Verification in Smart Grids Type Conference Article
  Year 2018 Publication 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm) Abbreviated Journal  
  Volume Issue Pages 1-6  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (up) Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MCLab @ davi @ mancini-etal:2018:smartgridcomm Serial 170  
Permanent link to this record
 

 
Author Driouich, Y.; Parente, M.; Tronci, E. pdf  doi
openurl 
  Title Model Checking Cyber-Physical Energy Systems Type Conference Article
  Year 2018 Publication Proceedings of 2017 International Renewable and Sustainable Energy Conference, IRSEC 2017 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Electrical and Electronics Engineers Inc. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (up) Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MCLab @ davi @ Driouich2018 Serial 177  
Permanent link to this record
 

 
Author Mancini, T.; Tronci, E.; Scialanca, A.; Lanciotti, F.; Finzi, A.; Guarneri, R.; Di Pompeo, S. pdf  doi
openurl 
  Title Optimal Fault-Tolerant Placement of Relay Nodes in a Mission Critical Wireless Network Type Conference Article
  Year 2018 Publication 25th RCRA International Workshop on “Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion” (RCRA 2018) Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (up) Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MCLab @ davi @ Serial 174  
Permanent link to this record
 

 
Author Mancini, T.; Mari, F.; Massini, A.; Melatti, I.; Salvo, I.; Sinisi, S.; Tronci, E.; Ehrig, R.; Röblitz, S.; Leeners, B. pdf  doi
openurl 
  Title Computing Personalised Treatments through In Silico Clinical Trials. A Case Study on Downregulation in Assisted Reproduction Type Conference Article
  Year 2018 Publication 25th RCRA International Workshop on “Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion” (RCRA 2018) Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (up) Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MCLab @ davi @ Serial 175  
Permanent link to this record
 

 
Author Tortora, L.; Meynen, G.; Bijlsma, J.; Tronci, E.; Ferracuti, S. pdf  url
doi  openurl
  Title Neuroprediction and A.I. in Forensic Psychiatry and Criminal Justice: A Neurolaw Perspective Type Journal Article
  Year 2020 Publication Frontiers in Psychology Abbreviated Journal  
  Volume 11 Issue Pages 220  
  Keywords  
  Abstract Advances in the use of neuroimaging in combination with A.I., and specifically the use of machine learning techniques, have led to the development of brain-reading technologies which, in the nearby future, could have many applications, such as lie detection, neuromarketing or brain-computer interfaces. Some of these could, in principle, also be used in forensic psychiatry. The application of these methods in forensic psychiatry could, for instance, be helpful to increase the accuracy of risk assessment and to identify possible interventions. This technique could be referred to as ‘A.I. neuroprediction,Â’ and involves identifying potential neurocognitive markers for the prediction of recidivism. However, the future implications of this technique and the role of neuroscience and A.I. in violence risk assessment remain to be established. In this paper, we review and analyze the literature concerning the use of brain-reading A.I. for neuroprediction of violence and rearrest to identify possibilities and challenges in the future use of these techniques in the fields of forensic psychiatry and criminal justice, considering legal implications and ethical issues. The analysis suggests that additional research is required on A.I. neuroprediction techniques, and there is still a great need to understand how they can be implemented in risk assessment in the field of forensic psychiatry. Besides the alluring potential of A.I. neuroprediction, we argue that its use in criminal justice and forensic psychiatry should be subjected to thorough harms/benefits analyses not only when these technologies will be fully available, but also while they are being researched and developed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (up) Series Issue Edition  
  ISSN 1664-1078 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MCLab @ davi @ Neuroprediction-2020 Serial 180  
Permanent link to this record
 

 
Author Pappagallo, A.; Massini, A.; Tronci, E. pdf  doi
openurl 
  Title Monte Carlo Based Statistical Model Checking of Cyber-Physical Systems: A Review Type Journal Article
  Year 2020 Publication Information Abbreviated Journal  
  Volume 11 Issue 558 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (up) Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MCLab @ davi @ Serial 181  
Permanent link to this record
 

 
Author Sinisi, S.; Alimguzhin, V.; Mancini, T.; Tronci, E.; Leeners, B. pdf  url
doi  openurl
  Title Complete populations of virtual patients for in silico clinical trials Type Journal Article
  Year 2021 Publication Bioinformatics Abbreviated Journal  
  Volume Issue Pages 1-8  
  Keywords  
  Abstract Model-based approaches to safety and efficacy assessment of pharmacological drugs, treatment strategies, or medical devices (In Silico Clinical Trial, ISCT) aim to decrease time and cost for the needed experimentations, reduce animal and human testing, and enable precision medicine. Unfortunately, in presence of non-identifiable models (e.g., reaction networks), parameter estimation is not enough to generate complete populations of Virtual Patient (VPs), i.e., populations guaranteed to show the entire spectrum of model behaviours (phenotypes), thus ensuring representativeness of the trial.We present methods and software based on global search driven by statistical model checking that, starting from a (non-identifiable) quantitative model of the human physiology (plus drugs PK/PD) and suitable biological and medical knowledge elicited from experts, compute a population of VPs whose behaviours are representative of the whole spectrum of phenotypes entailed by the model (completeness) and pairwise distinguishable according to user-provided criteria. This enables full granularity control on the size of the population to employ in an ISCT, guaranteeing representativeness while avoiding over-representation of behaviours.We proved the effectiveness of our algorithm on a non-identifiable ODE-based model of the female Hypothalamic-Pituitary-Gonadal axis, by generating a population of 4 830 264 VPs stratified into 7 levels (at different granularity of behaviours), and assessed its representativeness against 86 retrospective health records from Pfizer, Hannover Medical School and University Hospital of Lausanne. The datasets are respectively covered by our VPs within Average Normalised Mean Absolute Error of 15%, 20%, and 35% (90% of the latter dataset is covered within 20% error).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (up) Series Issue Edition  
  ISSN 1367-4803 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MCLab @ davi @ ref10.1093/bioinformatics/btaa1026 Serial 182  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: