toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fischer, S.; Ehrig, R.; Schaefer, S.; Tronci, E.; Mancini, T.; Egli, M.; Ille, F.; Krueger, T.H.C.; Leeners, B.; Roeblitz, S. pdf  url
doi  openurl
  Title (up) Mathematical Modeling and Simulation Provides Evidence for New Strategies of Ovarian Stimulation Type Journal Article
  Year 2021 Publication Frontiers in Endocrinology Abbreviated Journal  
  Volume 12 Issue Pages 117  
  Keywords  
  Abstract New approaches to ovarian stimulation protocols, such as luteal start, random start or double stimulation, allow for flexibility in ovarian stimulation at different phases of the menstrual cycle. It has been proposed that the success of these methods is based on the continuous growth of multiple cohorts (“waves”) of follicles throughout the menstrual cycle which leads to the availability of ovarian follicles for ovarian controlled stimulation at several time points. Though several preliminary studies have been published, their scientific evidence has not been considered as being strong enough to integrate these results into routine clinical practice. This work aims at adding further scientific evidence about the efficiency of variable-start protocols and underpinning the theory of follicular waves by using mathematical modeling and numerical simulations. For this purpose, we have modified and coupled two previously published models, one describing the time course of hormones and one describing competitive follicular growth in a normal menstrual cycle. The coupled model is used to test ovarian stimulation protocols in silico. Simulation results show the occurrence of follicles in a wave-like manner during a normal menstrual cycle and qualitatively predict the outcome of ovarian stimulation initiated at different time points of the menstrual cycle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-2392 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MCLab @ davi @ ref10.3389/fendo.2021.613048 Serial 189  
Permanent link to this record
 

 
Author Cesta, Amedeo; Finzi, Alberto; Fratini, Simone; Orlandini, Andrea; Tronci, Enrico pdf  openurl
  Title (up) Merging Planning, Scheduling & Verification – A Preliminary Analysis Type Conference Article
  Year 2008 Publication In Proc. of 10th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA) Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Astra08 Serial 24  
Permanent link to this record
 

 
Author Chen, Q.M.; Finzi, A.; Mancini, T.; Melatti, I.; Tronci, E. pdf  doi
openurl 
  Title (up) MILP, Pseudo-Boolean, and OMT Solvers for Optimal Fault-Tolerant Placements of Relay Nodes in Mission Critical Wireless Networks Type Journal Article
  Year 2020 Publication Abbreviated Journal Fundamenta Informaticae  
  Volume 174 Issue Pages 229-258  
  Keywords  
  Abstract In critical infrastructures like airports, much care has to be devoted in protecting radio communication networks from external electromagnetic interference. Protection of such mission-critical radio communication networks is usually tackled by exploiting radiogoniometers: at least three suitably deployed radiogoniometers, and a gateway gathering information from them, permit to monitor and localise sources of electromagnetic emissions that are not supposed to be present in the monitored area. Typically, radiogoniometers are connected to the gateway through relay nodes . As a result, some degree of fault-tolerance for the network of relay nodes is essential in order to offer a reliable monitoring. On the other hand, deployment of relay nodes is typically quite expensive. As a result, we have two conflicting requirements: minimise costs while guaranteeing a given fault-tolerance. In this paper, we address the problem of computing a deployment for relay nodes that minimises the overall cost while at the same time guaranteeing proper working of the network even when some of the relay nodes (up to a given maximum number) become faulty (fault-tolerance ). We show that, by means of a computation-intensive pre-processing on a HPC infrastructure, the above optimisation problem can be encoded as a 0/1 Linear Program, becoming suitable to be approached with standard Artificial Intelligence reasoners like MILP, PB-SAT, and SMT/OMT solvers. Our problem formulation enables us to present experimental results comparing the performance of these three solving technologies on a real case study of a relay node network deployment in areas of the Leonardo da Vinci Airport in Rome, Italy.  
  Address  
  Corporate Author Thesis  
  Publisher IOS Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1875-8681 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MCLab @ davi @ Serial 188  
Permanent link to this record
 

 
Author Coppo, Mario; Dezani-Ciancaglini, Mariangiola; Giovannetti, Elio; Salvo, Ivano pdf  doi
openurl 
  Title (up) Mobility Types for Mobile Processes in Mobile Ambients Type Journal Article
  Year 2003 Publication Electr. Notes Theor. Comput. Sci. Abbreviated Journal  
  Volume 78 Issue Pages  
  Keywords  
  Abstract We present an ambient-like calculus in which the open capability is dropped, and a new form of “lightweight  process mobility is introduced. The calculus comes equipped with a type system that allows the kind of values exchanged in communications and the access and mobility properties of processes to be controlled. A type inference procedure determines the “minimal  requirements to accept a system or a component as well typed. This gives a kind of principal typing. As an expressiveness test, we show that some well known calculi of concurrency and mobility can be encoded in our calculus in a natural way.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Coppo-Dezani-Giovannetti-Salvo:03 Serial 74  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico url  openurl
  Title (up) Model Based Synthesis of Control Software from System Level Formal Specifications Type Report
  Year 2013 Publication Abbreviated Journal  
  Volume abs/1107.5638 Issue Pages  
  Keywords  
  Abstract Many Embedded Systems are indeed Software Based Control Systems, that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of embedded systems control software.
We present an algorithm, along with a tool QKS implementing it, that from a formal model (as a Discrete Time Linear Hybrid System) of the controlled system (plant), implementation specifications (that is, number of bits in the Analog-to-Digital, AD, conversion) and System Level Formal Specifications (that is, safety and liveness requirements for the closed loop system) returns correct-by-construction control software that has a Worst Case Execution Time (WCET) linear in the number of AD bits and meets the given specifications.
We show feasibility of our approach by presenting experimental results on using it to synthesize control software for a buck DC-DC converter, a widely used mixed-mode analog circuit, and for the inverted pendulum.
 
  Address  
  Corporate Author Thesis  
  Publisher CoRR, Technical Report Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Serial 104  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico pdf  url
doi  openurl
  Title (up) Model Based Synthesis of Control Software from System Level Formal Specifications Type Journal Article
  Year 2014 Publication ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY Abbreviated Journal ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY  
  Volume 23 Issue 1 Pages Article 6  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher ACM Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1049-331X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Sapienza @ melatti @ Serial 110  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico; Alvisi, Lorenzo; Clement, Allen; Li, Harry pdf  doi
openurl 
  Title (up) Model Checking Coalition Nash Equilibria in MAD Distributed Systems Type Conference Article
  Year 2009 Publication Stabilization, Safety, and Security of Distributed Systems, 11th International Symposium, SSS 2009, Lyon, France, November 3-6, 2009. Proceedings Abbreviated Journal  
  Volume Issue Pages 531-546  
  Keywords  
  Abstract We present two OBDD based model checking algorithms for the verification of Nash equilibria in finite state mechanisms modeling Multiple Administrative Domains (MAD) distributed systems with possibly colluding agents (coalitions) and with possibly faulty or malicious nodes (Byzantine agents). Given a finite state mechanism, a proposed protocol for each agent and the maximum sizes f for Byzantine agents and q for agents collusions, our model checkers return Pass if the proposed protocol is an ε-f-q-Nash equilibrium, i.e. no coalition of size up to q may have an interest greater than ε in deviating from the proposed protocol when up to f Byzantine agents are present, Fail otherwise. We implemented our model checking algorithms within the NuSMV model checker: the first one explicitly checks equilibria for each coalition, while the second represents symbolically all coalitions. We present experimental results showing their effectiveness for moderate size mechanisms. For example, we can verify coalition Nash equilibria for mechanisms which corresponding normal form games would have more than $5 \times 10^21$ entries. Moreover, we compare the two approaches, and the explicit algorithm turns out to outperform the symbolic one. To the best of our knowledge, no model checking algorithm for verification of Nash equilibria of mechanisms with coalitions has been previously published.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Guerraoui, R.; Petit, F.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 5873 Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ sss09 Serial 19  
Permanent link to this record
 

 
Author Driouich, Y.; Parente, M.; Tronci, E. pdf  doi
openurl 
  Title (up) Model Checking Cyber-Physical Energy Systems Type Conference Article
  Year 2018 Publication Proceedings of 2017 International Renewable and Sustainable Energy Conference, IRSEC 2017 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Electrical and Electronics Engineers Inc. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MCLab @ davi @ Driouich2018 Serial 177  
Permanent link to this record
 

 
Author Verzino Giovanni ; Cavaliere, Federico; Mari, Federico; Melatti, Igor; Minei, Giovanni; Salvo, Ivano; Yushtein, Yuri; Tronci, Enrico pdf  doi
openurl 
  Title (up) Model checking driven simulation of sat procedures Type Conference Article
  Year 2012 Publication Proceedings of 12th International Conference on Space Operations (SpaceOps 2012) Abbreviated Journal International Conference on Space Operations  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Sapienza @ melatti @ Serial 117  
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico; Alvisi, Lorenzo; Clement, Allen; Li, Harry pdf  doi
openurl 
  Title (up) Model Checking Nash Equilibria in MAD Distributed Systems Type Conference Article
  Year 2008 Publication FMCAD '08: Proceedings of the 2008 International Conference on Formal Methods in Computer-Aided Design Abbreviated Journal  
  Volume Issue Pages 1-8  
  Keywords Model Checking, MAD Distributed System, Nash Equilibrium  
  Abstract We present a symbolic model checking algorithm for verification of Nash equilibria in finite state mechanisms modeling Multiple Administrative Domains (MAD) distributed systems. Given a finite state mechanism, a proposed protocol for each agent and an indifference threshold for rewards, our model checker returns PASS if the proposed protocol is a Nash equilibrium (up to the given indifference threshold) for the given mechanism, FAIL otherwise. We implemented our model checking algorithm inside the NuSMV model checker and present experimental results showing its effectiveness for moderate size mechanisms. For example, we can handle mechanisms which corresponding normal form games would have more than $10^20$ entries. To the best of our knowledge, no model checking algorithm for verification of mechanism Nash equilibria has been previously published.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Press Place of Publication Piscataway, NJ, USA Editor Cimatti, A.; Jones, R.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-4244-2735-2 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ MarMelSalTroAlvCle08 Serial 93  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: