|   | 
Details
   web
Records
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title (up) Synthesis of Quantized Feedback Control Software for Discrete Time Linear Hybrid Systems Type Conference Article
Year 2010 Publication Computer Aided Verification Abbreviated Journal
Volume Issue Pages 180-195
Keywords
Abstract We present an algorithm that given a Discrete Time Linear Hybrid System returns a correct-by-construction software implementation K for a (near time optimal) robust quantized feedback controller for along with the set of states on which K is guaranteed to work correctly (controllable region). Furthermore, K has a Worst Case Execution Time linear in the number of bits of the quantization schema.
Address
Corporate Author Thesis
Publisher Springer Berlin / Heidelberg Place of Publication Editor Touili, T.; Cook, B.; Jackson, P.
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 6174 Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ cav2010 Serial 16
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title (up) Synthesizing Control Software from Boolean Relations Type Journal Article
Year 2012 Publication International Journal on Advances in Software Abbreviated Journal Intern. Journal on Advances in SW
Volume vol. 5, nr 3&4 Issue Pages 212-223
Keywords Control Software Synthesis; Embedded Systems; Model Checking
Abstract Many software as well digital hardware automatic
synthesis methods define the set of
implementations meeting the given system
specifications with a boolean relation K. In
such a context a fundamental step in the software
(hardware) synthesis process is finding effective
solutions to the functional equation defined by
K. This entails finding a (set of) boolean
function(s) F (typically represented using
OBDDs, Ordered Binary Decision Diagrams)
such that: 1) for all x for which K is
satisfiable, K(x, F(x)) = 1 holds; 2) the
implementation of F is efficient with respect
to given implementation parameters such as code
size or execution time. While this problem has
been widely studied in digital hardware synthesis,
little has been done in a software synthesis
context. Unfortunately, the approaches developed
for hardware synthesis cannot be directly used in
a software context. This motivates investigation
of effective methods to solve the above problem
when F has to be implemented with software. In
this paper, we present an algorithm that, from an
OBDD representation for K, generates a C code
implementation for F that has the same size as
the OBDD for F and a worst case execution time
linear in nr, being n = |x| the number of
input arguments for functions in F and r the
number of functions in F. Moreover, a formal
proof of the proposed algorithm correctness is
also shown. Finally, we present experimental
results showing effectiveness of the proposed
algorithm.
Address
Corporate Author Thesis
Publisher IARIA Place of Publication Editor Luigi Lavazza
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1942-2628 ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ melatti @ Serial 108
Permanent link to this record
 

 
Author Mancini, Toni ; Mari, Federico ; Massini, Annalisa; Melatti, Igor; Tronci, Enrico
Title (up) System Level Formal Verification via Distributed Multi-Core Hardware in the Loop Simulation Type Conference Article
Year 2014 Publication Proc. of the 22nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing Abbreviated Journal Euromicro International Conference on Parallel, Distributed and Network-Based Processing
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher IEEE Computer Society Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Sapienza @ melatti @ Serial 118
Permanent link to this record
 

 
Author Mancini, Toni; Mari, Federico; Massini, Annalisa; Melatti, Igor; Merli, Fabio; Tronci, Enrico
Title (up) System Level Formal Verification via Model Checking Driven Simulation Type Conference Article
Year 2013 Publication Proceedings of the 25th International Conference on Computer Aided Verification. July 13-19, 2013, Saint Petersburg, Russia Abbreviated Journal CAV 2013
Volume Issue Pages 296-312
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Springer - Verlag Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 8044 Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-39798-1 Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Serial 113
Permanent link to this record
 

 
Author Bucciarelli, Antonio; Salvo, Ivano
Title (up) Totality, Definability and Boolean Circuits Type Journal Article
Year 1998 Publication Abbreviated Journal
Volume 1443 Issue Pages 808-819
Keywords
Abstract In the type frame originating from the flat domain of boolean values, we single out elements which are hereditarily total. We show that these elements can be defined, up to total equivalence, by sequential programs. The elements of an equivalence class of the totality equivalence relation (totality class) can be seen as different algorithms for computing a given set-theoretic boolean function. We show that the bottom element of a totality class, which is sequential, corresponds to the most eager algorithm, and the top to the laziest one. Finally we suggest a link between size of totality classes and a well known measure of complexity of boolean functions, namely their sensitivity.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ bucciarelli-salvo:98 Serial 70
Permanent link to this record
 

 
Author Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
Title (up) Undecidability of Quantized State Feedback Control for Discrete Time Linear Hybrid Systems Type Book Chapter
Year 2012 Publication Theoretical Aspects of Computing – ICTAC 2012 Abbreviated Journal
Volume Issue Pages 243-258
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor Roychoudhury, A.; D'Souza, M.
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title
Series Volume 7521 Series Issue Edition
ISSN ISBN 978-3-642-32942-5 Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Mari2012 Serial 99
Permanent link to this record
 

 
Author Mancini, T.; Mari, F.; Melatti, I.; Salvo, I.; Tronci, E.; Gruber, J.K.; Hayes, B.; Prodanovic, M.; Elmegaard, L.
Title (up) User Flexibility Aware Price Policy Synthesis for Smart Grids Type Conference Article
Year 2015 Publication Digital System Design (DSD), 2015 Euromicro Conference on Abbreviated Journal
Volume Issue Pages 478-485
Keywords Contracts; Current measurement; Load management; Power demand; Power measurement; State estimation; Substations; Grid State Estimation; Peak Shaving; Policy Robustness Verification; Price Policy Synthesis
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Sapienza @ preissler @ Mancini_etal2015_3 Serial 136
Permanent link to this record
 

 
Author Cesta, Amedeo; Finzi, Alberto; Fratini, Simone; Orlandini, Andrea; Tronci, Enrico
Title (up) Validation and Verification Issues in a Timeline-based Planning System Type Conference Article
Year 2008 Publication In E-Proc. of ICAPS Workshop on Knowledge Engineering for Planning and Scheduling Abbreviated Journal
Volume Issue Pages
Keywords
Abstract One of the key points to take into account to foster effective introduction of AI planning and scheduling systems in real world is to develop end user trust in the related technologies. Automated planning and scheduling systems often brings solutions to the users which are neither “obviousÃ¢â‚¬Âť nor immediately acceptable for them. This is due to the ability of these tools to take into account quite an amount of temporal and causal constraints and to employ resolution processes often designed to optimize the solution with respect to non trivial evaluation functions. To increase technology trust, the study of tools for verifying and validating plans and schedules produced by AI systems might be instrumental. In general, validation and verification techniques represent a needed complementary technology in developing domain independent architectures for automated problem solving. This paper presents a preliminary report of the issues concerned with the use of two software tools for formal verification of finite state systems to the validation of the solutions produced by MrSPOCK, a recent effort for building a timeline based planning tool in an ESA project.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Keps08 Serial 25
Permanent link to this record
 

 
Author Cesta, Amedeo; Finzi, Alberto; Fratini, Simone; Orlandini, Andrea; Tronci, Enrico
Title (up) Validation and verification issues in a timeline-based planning system Type Journal Article
Year 2010 Publication The Knowledge Engineering Review Abbreviated Journal
Volume 25 Issue 03 Pages 299-318
Keywords
Abstract One of the key points to take into account to foster effective introduction of AI planning and scheduling systems in real world is to develop end user trust in the related technologies. Automated planning and scheduling systems often brings solutions to the users which are neither “obviousÃ¢â‚¬Âť nor immediately acceptable for them. This is due to the ability of these tools to take into account quite an amount of temporal and causal constraints and to employ resolution processes often designed to optimize the solution with respect to non trivial evaluation functions. To increase technology trust, the study of tools for verifying and validating plans and schedules produced by AI systems might be instrumental. In general, validation and verification techniques represent a needed complementary technology in developing domain independent architectures for automated problem solving. This paper presents a preliminary report of the issues concerned with the use of two software tools for formal verification of finite state systems to the validation of the solutions produced by MrSPOCK, a recent effort for building a timeline based planning tool in an ESA project.
Address
Corporate Author Thesis
Publisher Cambridge University Press Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Cffot10 Serial 18
Permanent link to this record
 

 
Author Cesta, Amedeo; Finzi, Alberto; Fratini, Simone; Orlandini, Andrea; Tronci, Enrico
Title (up) Verifying Flexible Timeline-based Plans Type Conference Article
Year 2009 Publication E-Proc. of ICAPS Workshop on Validation and Verification of Planning and Scheduling Systems Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The synthesis of flexible temporal plans has demonstrated wide applications possibilities in heterogeneous domains. We are currently studying the connection between plan generation and execution from the particular perspective of verifying a flexible plan before actual execution. This paper explores how a model-checking verification tool, based on UPPAAL-TIGA, is suitable for verifying flexible temporal plans. We first describe the formal model, the formalism, and the verification method. Furthermore we discuss our own approach and some preliminary empirical results using a real-world case study.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number Sapienza @ mari @ Vvps09 Serial 23
Permanent link to this record