toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ciancamerla, Ester; Minichino, Michele; Serro, Stefano; Tronci, Enrico pdf  doi
openurl 
  Title Automatic Timeliness Verification of a Public Mobile Network Type (up) Conference Article
  Year 2003 Publication 22nd International Conference on Computer Safety, Reliability, and Security (SAFECOMP) Abbreviated Journal  
  Volume Issue Pages 35-48  
  Keywords  
  Abstract This paper deals with the automatic verification of the timeliness of Public Mobile Network (PMN), consisting of Mobile Nodes (MNs) and Base Stations (BSs). We use the Mur$\varphi$ Model Checker to verify that the waiting access time of each MN, under different PMN configurations and loads, and different inter arrival times of MNs in a BS cell, is always below a preassigned threshold. Our experimental results show that Model Checking can be successfully used to generate worst case scenarios and nicely complements probabilistic methods and simulation which are typically used for performance evaluation.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Edinburgh, UK Editor Anderson, S.; Felici, M.; Littlewood, B.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 2788 Series Issue Edition  
  ISSN 978-3-540-20126-7 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ safecomp03 Serial 38  
Permanent link to this record
 

 
Author Della Penna, Giuseppe; Intrigila, Benedetto; Tronci, Enrico; Venturini Zilli, Marisa pdf  doi
openurl 
  Title Exploiting Transition Locality in the Disk Based Mur$\varphi$ Verifier Type (up) Conference Article
  Year 2002 Publication 4th International Conference on Formal Methods in Computer-Aided Design (FMCAD) Abbreviated Journal  
  Volume Issue Pages 202-219  
  Keywords  
  Abstract The main obstruction to automatic verification of Finite State Systems is the huge amount of memory required to complete the verification task (state explosion). This motivates research on distributed as well as disk based verification algorithms. In this paper we present a disk based Breadth First Explicit State Space Exploration algorithm as well as an implementation of it within the Mur$\varphi$ verifier. Our algorithm exploits transition locality (i.e. the statistical fact that most transitions lead to unvisited states or to recently visited states) to decrease disk read accesses thus reducing the time overhead due to disk usage. A disk based verification algorithm for Mur$\varphi$ has been already proposed in the literature. To measure the time speed up due to locality exploitation we compared our algorithm with such previously proposed algorithm. Our experimental results show that our disk based verification algorithm is typically more than 10 times faster than such previously proposed disk based verification algorithm. To measure the time overhead due to disk usage we compared our algorithm with RAM based verification using the (standard) Mur$\varphi$ verifier with enough memory to complete the verification task. Our experimental results show that even when using 1/10 of the RAM needed to complete verification, our disk based algorithm is only between 1.4 and 5.3 times (3 times on average) slower than (RAM) Mur$\varphi$ with enough RAM memory to complete the verification task at hand. Using our disk based Mur$\varphi$ we were able to complete verification of a protocol with about $10^9$ reachable states. This would require more than 5 gigabytes of RAM using RAM based Mur$\varphi$.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Portland, OR, USA Editor Aagaard, M.; O'Leary, J.W.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 2517 Series Issue Edition  
  ISSN 3-540-00116-6 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ fmcad02 Serial 41  
Permanent link to this record
 

 
Author Gribaudo, Marco; Horváth, Andras; Bobbio, Andrea; Tronci, Enrico; Ciancamerla, Ester; Minichino, Michele pdf  doi
openurl 
  Title Model-Checking Based on Fluid Petri Nets for the Temperature Control System of the ICARO Co-generative Plant Type (up) Conference Article
  Year 2002 Publication 21st International Conference on Computer Safety, Reliability and Security (SAFECOMP) Abbreviated Journal  
  Volume Issue Pages 273-283  
  Keywords  
  Abstract The modeling and analysis of hybrid systems is a recent and challenging research area which is actually dominated by two main lines: a functional analysis based on the description of the system in terms of discrete state (hybrid) automata (whose goal is to ascertain for conformity and reachability properties), and a stochastic analysis (whose aim is to provide performance and dependability measures). This paper investigates a unifying view between formal methods and stochastic methods by proposing an analysis methodology of hybrid systems based on Fluid Petri Nets (FPN). It is shown that the same FPN model can be fed to a functional analyser for model checking as well as to a stochastic analyser for performance evaluation. We illustrate our approach and show its usefulness by applying it to a “real world  hybrid system: the temperature control system of a co-generative plant.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Catania, Italy Editor Anderson, S.; Bologna, S.; Felici, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 2434 Series Issue Edition  
  ISSN 3-540-44157-3 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ safecomp02 Serial 42  
Permanent link to this record
 

 
Author Tronci, Enrico; Della Penna, Giuseppe; Intrigila, Benedetto; Venturini Zilli, Marisa pdf  doi
openurl 
  Title A Probabilistic Approach to Automatic Verification of Concurrent Systems Type (up) Conference Article
  Year 2001 Publication 8th Asia-Pacific Software Engineering Conference (APSEC) Abbreviated Journal  
  Volume Issue Pages 317-324  
  Keywords  
  Abstract The main barrier to automatic verification of concurrent systems is the huge amount of memory required to complete the verification task (state explosion). In this paper we present a probabilistic algorithm for automatic verification via model checking. Our algorithm trades space with time. In particular, when memory is full because of state explosion our algorithm does not give up verification. Instead it just proceeds at a lower speed and its results will only hold with some arbitrarily small error probability. Our preliminary experimental results show that by using our probabilistic algorithm we can typically save more than 30% of RAM with an average time penalty of about 100% w.r.t. a deterministic state space exploration with enough memory to complete the verification task. This is better than giving up the verification task because of lack of memory.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Computer Society Place of Publication Macau, China Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0-7695-1408-1 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ apsec01 Serial 43  
Permanent link to this record
 

 
Author Tronci, Enrico; Della Penna, Giuseppe; Intrigila, Benedetto; Venturini Zilli, Marisa pdf  doi
openurl 
  Title Exploiting Transition Locality in Automatic Verification Type (up) Conference Article
  Year 2001 Publication 11th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware Design and Verification Methods (CHARME) Abbreviated Journal  
  Volume Issue Pages 259-274  
  Keywords  
  Abstract In this paper we present an algorithm to contrast state explosion when using Explicit State Space Exploration to verify protocols. We show experimentally that protocols exhibit transition locality. We present a verification algorithm that exploits transition locality as well as an implementation of it within the Mur$\varphi$ verifier. Our algorithm is compatible with all Breadth First (BF) optimization techniques present in the Mur$\varphi$ verifier and it is by no means a substitute for any of them. In fact, since our algorithm trades space with time, it is typically most useful when one runs out of memory and has already used all other state reduction techniques present in the Mur$\varphi$ verifier. Our experimental results show that using our approach we can typically save more than 40% of RAM with an average time penalty of about 50% when using (Mur$\varphi$) bit compression and 100% when using bit compression and hash compaction.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Livingston, Scotland, UK Editor Margaria, T.; Melham, T.F.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 2144 Series Issue Edition  
  ISSN 3-540-42541-1 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ charme01 Serial 44  
Permanent link to this record
 

 
Author Dipoppa, G.; D'Alessandro, G.; Semprini, R.; Tronci, E. pdf  doi
openurl 
  Title Integrating Automatic Verification of Safety Requirements in Railway Interlocking System Design Type (up) Conference Article
  Year 2001 Publication High Assurance Systems Engineering, 2001. Sixth IEEE International Symposium on Abbreviated Journal  
  Volume Issue Pages 209-219  
  Keywords  
  Abstract A railway interlocking system (RIS) is an embedded system (namely a supervisory control system) that ensures the safe, operation of the devices in a railway station. RIS is a safety critical system. We explore the possibility of integrating automatic formal verification methods in a given industry RIS design flow. The main obstructions to be overcome in our work are: selecting a formal verification tool that is efficient enough to solve the verification problems at hand; and devising a cost effective integration strategy for such tool. We were able to devise a successful integration strategy meeting the above constraints without requiring major modification in the pre-existent design flow nor retraining of personnel. We run verification experiments for a RIS designed for the Singapore Subway. The experiments show that the RIS design flow obtained from our integration strategy is able to automatically verify real life RIS designs.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Computer Society Place of Publication Albuquerque, NM, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0-7695-1275-5 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ hase01 Serial 45  
Permanent link to this record
 

 
Author Tronci, Enrico pdf  doi
openurl 
  Title Automatic Synthesis of Control Software for an Industrial Automation Control System Type (up) Conference Article
  Year 1999 Publication Proc.of: 14th IEEE International Conference on: Automated Software Engineering (ASE) Abbreviated Journal  
  Volume Issue Pages 247-250  
  Keywords  
  Abstract We present a case study on automatic synthesis of control software from formal specifications for an industrial automation control system. Our aim is to compare the effectiveness (i.e. design effort and controller quality) of automatic controller synthesis from closed loop formal specifications with that of manual controller design, followed by automatic verification. Our experimental results show that for industrial automation control systems, automatic synthesis is a viable and profitable (especially as far as design effort is concerned) alternative to manual design, followed by automatic verification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cocoa Beach, Florida, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ ase99 Serial 49  
Permanent link to this record
 

 
Author Tronci, Enrico pdf  doi
openurl 
  Title Formally Modeling a Metal Processing Plant and its Closed Loop Specifications Type (up) Conference Article
  Year 1999 Publication 4th IEEE International Symposium on High-Assurance Systems Engineering (HASE) Abbreviated Journal  
  Volume Issue Pages 151  
  Keywords  
  Abstract We present a case study on automatic synthesis of control software from formal specifications for an industrial automation control system. Our aim is to compare the effectiveness (i.e. design effort and controller quality) of automatic controller synthesis from closed loop formal specifications with that of manual controller design followed by automatic verification. The system to be controlled (plant) models a metal processing facility near Karlsruhe. We succeeded in automatically generating C code implementing a (correct by construction) embedded controller for such a plant from closed loop formal specifications. Our experimental results show that for industrial automation control systems automatic synthesis is a viable and profitable (especially as far as design effort is concerned) alternative to manual design followed by automatic verification.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Computer Society Place of Publication Washington, D.C, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0-7695-0418-3 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ hase99 Serial 50  
Permanent link to this record
 

 
Author Fantechi, Alessandro; Gnesi, Stefania; Mazzanti, Franco; Pugliese, Rosario; Tronci, Enrico pdf  doi
openurl 
  Title A Symbolic Model Checker for ACTL Type (up) Conference Article
  Year 1998 Publication International Workshop on Current Trends in Applied Formal Method (FM-Trends) Abbreviated Journal  
  Volume Issue Pages 228-242  
  Keywords  
  Abstract We present SAM, a symbolic model checker for ACTL, the action-based version of CTL. SAM relies on implicit representations of Labeled Transition Systems (LTSs), the semantic domain for ACTL formulae, and uses symbolic manipulation algorithms. SAM has been realized by translating (networks of) LTSs and, possibly recursive, ACTL formulae into BSP (Boolean Symbolic Programming), a programming language aiming at defining computations on boolean functions, and by using the BSP interpreter to carry out computations (i.e. verifications).  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Boppard, Germany Editor Hutter, D.; Stephan, W.; Traverso, P.; Ullmann, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 1641 Series Issue Edition  
  ISSN 3-540-66462-9 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ fm-trends98 Serial 51  
Permanent link to this record
 

 
Author Tronci, Enrico pdf  doi
openurl 
  Title Automatic Synthesis of Controllers from Formal Specifications Type (up) Conference Article
  Year 1998 Publication Proc of 2nd IEEE International Conference on Formal Engineering Methods (ICFEM) Abbreviated Journal  
  Volume Issue Pages 134-143  
  Keywords  
  Abstract Many safety critical reactive systems are indeed embedded control systems. Usually a control system can be partitioned into two main subsystems: a controller and a plant. Roughly speaking: the controller observes the state of the plant and sends commands (stimulus) to the plant to achieve predefined goals. We show that when the plant can be modeled as a deterministic finite state system (FSS) it is possible to effectively use formal methods to automatically synthesize the program implementing the controller from the plant model and the given formal specifications for the closed loop system (plant+controller). This guarantees that the controller program is correct by construction. To the best of our knowledge there is no previously published effective algorithm to extract executable code for the controller from closed loop formal specifications. We show practical usefulness of our techniques by giving experimental results on their use to synthesize C programs implementing optimal controllers (OCs) for plants with more than 109 states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Brisbane, Queensland, Australia Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ icfem98 Serial 52  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: