Silvia Mazzini, Stefano Puri, Federico Mari, Igor Melatti, and Enrico Tronci. "Formal Verification at System Level." In In: DAta Systems In Aerospace (DASIA), Org. EuroSpace, Canadian Space Agency, CNES, ESA, EUMETSAT. Instanbul, Turkey, EuroSpace., 2009.
Abstract: System Level Analysis calls for a language comprehensible to experts with different background and yet precise enough to support meaningful analyses. SysML is emerging as an effective balance between such conflicting goals. In this paper we outline some the results obtained as for SysML based system level functional formal verification by an ESA/ESTEC study, with a collaboration among INTECS and La Sapienza University of Roma. The study focuses on SysML based system level functional requirements techniques.
|
Amedeo Cesta, Alberto Finzi, Simone Fratini, Andrea Orlandini, and Enrico Tronci. "Flexible Timeline-Based Plan Verification." In KI 2009: Advances in Artificial Intelligence, 32nd Annual German Conference on AI, Paderborn, Germany, September 15-18, 2009. Proceedings, edited by B. Ã. ¤rbel Mertsching, M. Hund and M. Z. Aziz, 49–56. Lecture Notes in Computer Science 5803. Springer, 2009. ISSN: 978-3-642-04616-2. DOI: 10.1007/978-3-642-04617-9_7.
|
Amedeo Cesta, Alberto Finzi, Simone Fratini, Andrea Orlandini, and Enrico Tronci. "Flexible Plan Verification: Feasibility Results." In 16th RCRA International Workshop on “Experimental evaluation of algorithms for solving problems with combinatorial explosion” (RCRA). Proceedings., 2009.
|
Andrea Bobbio, Ester Ciancamerla, Michele Minichino, and Enrico Tronci. "Functional analysis of a telecontrol system and stochastic measures of its GSM/GPRS connections." Archives of Transport – International Journal of Transport Problems 17, no. 3-4 (2005).
|
Edoardo Campagnano, Ester Ciancamerla, Michele Minichino, and Enrico Tronci. "Automatic Analysis of a Safety Critical Tele Control System." In 24th International Conference on: Computer Safety, Reliability, and Security (SAFECOMP), edited by R. Winther, B. A. Gran and G. Dahll, 94–107. Lecture Notes in Computer Science 3688. Fredrikstad, Norway: Springer, 2005. ISSN: 3-540-29200-4. DOI: 10.1007/11563228_8.
Abstract: We show how the Mur$\varphi$ model checker can be used to automatically carry out safety analysis of a quite complex hybrid system tele-controlling vehicles traffic inside a safety critical transport infrastructure such as a long bridge or a tunnel. We present the Mur$\varphi$ model we developed towards this end as well as the experimental results we obtained by running the Mur$\varphi$ verifier on our model. Our experimental results show that the approach presented here can be used to verify safety of critical dimensioning parameters (e.g. bandwidth) of the telecommunication network embedded in a safety critical system.
|
Marco Martinelli, Enrico Tronci, Giovanni Dipoppa, and Claudio Balducelli. "Electric Power System Anomaly Detection Using Neural Networks." In 8th International Conference on: Knowledge-Based Intelligent Information and Engineering Systems (KES), edited by M. G. Negoita, R. J. Howlett and L. C. Jain, 1242–1248. Lecture Notes in Computer Science 3213. Wellington, New Zealand: Springer, 2004. ISSN: 3-540-23318-0. DOI: 10.1007/978-3-540-30132-5_168.
Abstract: The aim of this work is to propose an approach to monitor and protect Electric Power System by learning normal system behaviour at substations level, and raising an alarm signal when an abnormal status is detected; the problem is addressed by the use of autoassociative neural networks, reading substation measures. Experimental results show that, through the proposed approach, neural networks can be used to learn parameters underlaying system behaviour, and their output processed to detecting anomalies due to hijacking of measures, changes in the power network topology (i.e. transmission lines breaking) and unexpected power demand trend.
|
"Charme." In Lecture Notes in Computer Science, edited by D. Geist and E. Tronci. Vol. 2860. Springer, 2003. ISSN: 3-540-20363-X. DOI: 10.1007/b93958.
|
Marco Gribaudo, Andras Horváth, Andrea Bobbio, Enrico Tronci, Ester Ciancamerla, and Michele Minichino. "Fluid Petri Nets and hybrid model checking: a comparative case study." Int. Journal on: Reliability Engineering & System Safety 81, no. 3 (2003): 239–257. Elsevier. DOI: 10.1016/S0951-8320(03)00089-9.
Abstract: The modeling and analysis of hybrid systems is a recent and challenging research area which is actually dominated by two main lines: a functional analysis based on the description of the system in terms of discrete state (hybrid) automata (whose goal is to ascertain conformity and reachability properties), and a stochastic analysis (whose aim is to provide performance and dependability measures). This paper investigates a unifying view between formal methods and stochastic methods by proposing an analysis methodology of hybrid systems based on Fluid Petri Nets (FPNs). FPNs can be analyzed directly using appropriate tools. Our paper shows that the same FPN model can be fed to different functional analyzers for model checking. In order to extensively explore the capability of the technique, we have converted the original FPN into languages for discrete as well as hybrid as well as stochastic model checkers. In this way, a first comparison among the modeling power of well known tools can be carried out. Our approach is illustrated by means of a ââ¬â¢real worldââ¬â¢ hybrid system: the temperature control system of a co-generative plant.
|
Giuseppe Della Penna, Benedetto Intrigila, Enrico Tronci, and Marisa Venturini Zilli. "Exploiting Transition Locality in the Disk Based Mur$\varphi$ Verifier." In 4th International Conference on Formal Methods in Computer-Aided Design (FMCAD), edited by M. Aagaard and J. W. O'Leary, 202–219. Lecture Notes in Computer Science 2517. Portland, OR, USA: Springer, 2002. ISSN: 3-540-00116-6. DOI: 10.1007/3-540-36126-X_13.
Abstract: The main obstruction to automatic verification of Finite State Systems is the huge amount of memory required to complete the verification task (state explosion). This motivates research on distributed as well as disk based verification algorithms. In this paper we present a disk based Breadth First Explicit State Space Exploration algorithm as well as an implementation of it within the Mur$\varphi$ verifier. Our algorithm exploits transition locality (i.e. the statistical fact that most transitions lead to unvisited states or to recently visited states) to decrease disk read accesses thus reducing the time overhead due to disk usage. A disk based verification algorithm for Mur$\varphi$ has been already proposed in the literature. To measure the time speed up due to locality exploitation we compared our algorithm with such previously proposed algorithm. Our experimental results show that our disk based verification algorithm is typically more than 10 times faster than such previously proposed disk based verification algorithm. To measure the time overhead due to disk usage we compared our algorithm with RAM based verification using the (standard) Mur$\varphi$ verifier with enough memory to complete the verification task. Our experimental results show that even when using 1/10 of the RAM needed to complete verification, our disk based algorithm is only between 1.4 and 5.3 times (3 times on average) slower than (RAM) Mur$\varphi$ with enough RAM memory to complete the verification task at hand. Using our disk based Mur$\varphi$ we were able to complete verification of a protocol with about $10^9$ reachable states. This would require more than 5 gigabytes of RAM using RAM based Mur$\varphi$.
|
Marco Gribaudo, Andras Horváth, Andrea Bobbio, Enrico Tronci, Ester Ciancamerla, and Michele Minichino. "Model-Checking Based on Fluid Petri Nets for the Temperature Control System of the ICARO Co-generative Plant." In 21st International Conference on Computer Safety, Reliability and Security (SAFECOMP), edited by S. Anderson, S. Bologna and M. Felici, 273–283. Lecture Notes in Computer Science 2434. Catania, Italy: Springer, 2002. ISSN: 3-540-44157-3. DOI: 10.1007/3-540-45732-1_27.
Abstract: The modeling and analysis of hybrid systems is a recent and challenging research area which is actually dominated by two main lines: a functional analysis based on the description of the system in terms of discrete state (hybrid) automata (whose goal is to ascertain for conformity and reachability properties), and a stochastic analysis (whose aim is to provide performance and dependability measures). This paper investigates a unifying view between formal methods and stochastic methods by proposing an analysis methodology of hybrid systems based on Fluid Petri Nets (FPN). It is shown that the same FPN model can be fed to a functional analyser for model checking as well as to a stochastic analyser for performance evaluation. We illustrate our approach and show its usefulness by applying it to a ââ¬Åreal worldââ¬Â hybrid system: the temperature control system of a co-generative plant.
|